第二十二 分数、百分数应用题综合提高 一、 基础知识回顾: 1. 比: (1)比的概念:两个数相除叫做两个数的比比例如,56 可记作 5:6 “:”是 比号,比号前面的数叫做比的前项前项,比号后面的数叫做比的后项后项,前项除以后项所 得的商叫做比值比值比的后项不能为 0 (2)比的性质:比的前项和后
高斯小学奥数六年级下册含答案第04讲_曲线形问题综合提高Tag内容描述:
1、第二十二 分数、百分数应用题综合提高 一、 基础知识回顾: 1. 比: (1)比的概念:两个数相除叫做两个数的比比例如,56 可记作 5:6 “:”是 比号,比号前面的数叫做比的前项前项,比号后面的数叫做比的后项后项,前项除以后项所 得的商叫做比值比值比的后项不能为 0 (2)比的性质:比的前项和后项都乘以或除以一个不为零的数,比值不变 2. 比例基本性质: 如果:a bc d,那么adbc 3. 正比例关系和反比例关系: (1)正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种 量相对应的两个数的比值(也就是商)一定,这两。
2、第九讲 应用题综合练习 【学生注意】本讲练习满分 100 分,考试时间 70 分钟 一、填空题一、填空题(本题共有 8 小题,每题 6 分) 1. 语文测验,卡莉娅前三次的平均分是 77若想使平均分达到 80,她的第四次测验最少要得_ 分 2. 小高、萱萱、卡莉娅和墨莫四人一起折了 1200 只千纸鹤已知小高和萱萱两人共折了 600 只,小 高和卡莉娅两人共折了 400 只,小高和墨莫两人共折了 300 只,那么小高折了_只千纸鹤 3. 一个灰太狼玩具的进价是 20 元,售价是 50 元,结果没人来买于是店主决定打折出售,但希望利 润率不低于 25%,那么这个玩具最多。
3、第十讲 数字谜综合练习 【学生注意】本讲练习满分 100 分,考试时间 70 分钟 一、填空题一、填空题(本题共有 8 小题,每题 6 分) 1. 下边是三个数的加法算式,每个“”内有一个数字,则三个加数中 最大的一个是_ 2. 下边的加法算式中,每个“”内有一个数字,所有“”内的数字之 和最大可达到_ 3. 在下面竖式中,每个“”内有一个数字,那么所得乘积最小是 _,请给出一种使得乘积最小的填法 4. (1)请在横线上填上加号或减号,使等式成立: 2009_10_11_12_13_14_152016 (2)请在横线上填上乘号或除号,使等式成立: 2010_3_4_5_67_8_9。
4、第十一讲 数论综合练习 【学生注意】本讲练习满分 100 分,考试时间 70 分钟 一、填空题一、填空题(本题共有 8 小题,每题 6 分) 1. 进位制的换算: (1)412321(_)10; (2)1075(_)5 2. 求整数部分与小数部分: (1) 2 3.3332 _; (2) 23.456.7_ 3. 把 2 7 化成循环小数,小数点后第 2010 个数字是_ 4. 2010 的全部约数有_个,这些约数的和数是_ 5. (1)如果123ab能被 72 整除,则ab _ (2)如果2010 2010 2010ab能被 99 整除,则ab _ 6. 两个自然数的最大公约数是 100,最小公倍数是20100,这两个自然数的差是 6400,那么这两个自。
5、第十二讲 计数综合练习 【学生注意】本讲练习满分 100 分,考试时间 70 分钟 一、填空题一、填空题(本题共有 8 小题,每题 6 分) 1. 用 0、1、2、3、4、5 这六个自然数中的三个组成三位数,从个位到百位的数字依次增大,且任意 两个数字的差都不是 1,这样的三位数共有_个 2. 从 1 到 30 中选出两个不同的数相加,和大于 30 的情况有_种 3. 从 1000 到 2010 中,十位数与个位数相同的数有_个 4. 在用数字 0、1 组成一个 6 位数中,至少有 4 个连续的 1 的数共有_个 5. 3 个海盗分 30 枚金币,如果每个海盗最多分 12 枚,一共有_种不同的。
6、第八讲 几何综合练习 【学生注意】本讲练习满分 100 分,考试时间 70 分钟 一一、填空题、填空题(本题共有 8 小题,每题 6 分) 1. 如图,已知2BODO,6COAO,阴影部分的面积和是 13 平方 厘米,那么四边形 ABCD 的面积是_平方厘米 2. 已知右图中:3:4AD DB ,CEEB,:1:3CF CD ,若DEF的面积 为 8 平方厘米,则三角形 ADC 的面积为_平方厘米 3. 如图,长方形草地 ABCD 被分为面积相等的甲、乙、丙和丁四 份,其中图形甲的长和宽的比是:2:1a b ,那么图形乙的长和 宽的比是_ 4. 如右图,有三个正方形 ABCD、BEFG 和 CHIJ,其中正方形 ABCD 。
7、第七讲 计算综合练习 【学生注意】本讲练习满分 100 分,考试时间 70 分钟 一一、填空填空题题(本题共有 7 小题,每题 4 分) 1. 11111 23456 2481632 _ 2. 20102010 201020102010_ 3. 24 8 1.254.82.4 14.125 31 _ 4. 1 3 2 5 4 6 _ 5. 111111 3 44 55 6677 88 9 _ 6. 1111 20101111 3452010 _ 7. 123456789999999999_ 二二、填空填空题题(本题共有4小题,每题5分) 8. 8121620242832 15356399143195255 _ 9. 22 2.014.02 7.997.99_。
8、第十三讲 组合综合练习 【学生注意】本讲练习满分 100 分,考试时间 70 分钟 一、填空题一、填空题(本题共有 8 小题,每题 6 分) 1. 箱子里有 7 个红球、8 个白球和 9 个蓝球,从中摸出_个球,才能保证每种颜色的球都至少有 一个 2. 三位老师对四位同学的竞赛结果进行了预测邹老师说: “墨莫第一, 卡莉娅第四 ” 李老师说: “萱 萱第一,小高第三 ”杨老师说: “卡莉娅第二,萱萱第三 ”结果四位同学都进入了前四名,而三 位老师的预测各对了一半,那么萱萱是第_名 3. 由 1、4、7、10、13 组成甲组数,由 2、5、8、11、14 组成乙组。
9、第十七讲 整数型计算综合提高 一、多位数计算 1 凑整、凑 9 的思想; 2 数字和问题:与一个小于它的数相乘,积的数字和是 9n 二、等差数列 1 等差数列的“配对”思想; 2 求和公式: (1) ; (2) 3 项数公式: 4 第 n 项: 三、等比数列: 等比数列“错位相减”法求和,基本步骤是: (1)设等比数列的和为 S; (2)等式两边同时乘以公比(或者公比的倒数) ; (3)两式对应的项相减,消去同样的项,求出结果; 四、基本公式 1 平方差公式 2 平方求和 3 立方求和 五、整数裂项 1 ; 2 123 1 2 32 3 43 4 512 4 nnnn nnn 12 1 22 33 4。
10、第六讲 变速行程问题 本讲知识点汇总: 一 普通变速问题的求解 1 分段比较 在变速点把前后的行程分开,这样一个变速过程被分成两个不变速过程 2 假设法比较 假设不变速,然后对假设前和假设后的运动过程之间的差别进行比较 3 方程 设未知数,以路程相同或者时间相同为等量关系列方程 二 带有往返的变速问题 1 熟记“甲乙异侧出发”与“甲乙同侧出发”这两类多次往返问题的特点: (1) 甲乙异侧出发:当路程和为 1、3、5、个全长时,两人迎面相遇; 当路程差为 1、3、5、个全长时,两人追上; (2) 甲乙同侧出发:当路程和为 2、4、6、个。
11、第十五讲 数论综合提高一 本讲知识点汇总: 一一 整除 1 整除的定义 如果整数 a 除以整数 b ,所得的商是整数且没有余数,我们就说 a 能被 b 整除,也可以说 b 能整除 a,记作 如果除得的结果有余数,我们就说 a 不能被 b 整除,也可以说 b 不整除 a 2 整除判定 (1) 尾数判断法 能被 2、5 整除的数的特征:个位数字能被 2 或 5 整除; 能被 4、25 整除的数的特征:末两位能被 4 或 25 整除; 能被 8、125 整除的数的特征:末三位能被 8 或 125 整除 (2) 截断求和法 能被 9、99、999 及其约数整除的数的特征 (3) 截断求差法 能被 11。
12、第十六讲 数论综合提高二 本讲知识点汇总: 一、约数、倍数 1 基本概念 (1) 如果 a 能被 b 整除(也就是) ,则 b 是 a 的约数(因数) ,a 是 b 的倍数; (2) 约数具有“配对”性质:大约数对应小约数 2 约数个数 (1) 分解质因数,指数加 1 再相乘; (2) 平方数有奇数个约数,非平方数有偶数个约数 3 约数和公式 (1) 如果一个数的质因数分解式为, 则约数和为 ; (2) 如 果 一 个 数 的 质 因 数 分 解 式 为, 则 约 数 和 为 ; 二、公约数、公倍数 1 基本概念 (1) 如果 a 是若干个数公有的约数, 则称 a 是它们的公约数。
13、第十九讲 计数综合提高上 一、 枚举法 1、简单枚举 2、分类枚举 3、特殊的枚举:标数法、树形图 二、 加法原理分类 如果完成一件事有几类方式, 在每一类方式中又有不同的方法, 那么把每类的方法 数相加就得到所有的方法数 加法原理的类与类之间会满足下列要求: (1)只能选择其中的某一类,而不能几类同时选; (2)类与类之间可以相互替代,只需要选择某一类就可以满足要求 三、 乘法原理分步 如果完成一件事分为几个步骤, 在每一个步骤中又有不同的方法, 那么把每步的方 法数相乘就得到所有的方法数 乘法原理的步与步之间满足下列要求。
14、第二十讲 计数综合提高下 一、上楼梯模型 找寻每种情况与前面若干种情况之间的关系 二、几何图形分平面增量分析 考虑每次增加一个图形时,所增加的平面数,在分析问题时,要注意以下几点: 1. 交点越多越好; 2. 交点多决定段数多(两种情况,即封闭图形和不封闭图形) ; 3. 有几段则增加几部分(有直线要先画直线) 三、传球法 1. 传球法是树形图的简化版本; 2. 传球规则决定累加规则; (1)首先从传球者角度考虑传球方法; (2)其次从接球者角度考虑如何累加; 3. 可以使用传球法的题型; (1)对相邻数位上的数字大小有要求的计数。
15、第二十三讲 行程问题超越提高 一、 基本行程、相遇与追及: 1. 行程问题的基本公式: 2. 相遇问题: ; 3. 追及问题: ; 二、 火车问题: 1. 火车过桥: ; 2. 火车过人问题: (1) 人站立不动:过人的速度为火车本身的速度,路程为火车的车长 (2) 人迎向火车:过人的速度为人与火车的速度之和,路程为火车的车长 (3) 人背向火车:过人的速度为火车与人的速度之差,路程为火车的车长 3. 火车错车问题: (1) 快车追上并超过慢车:路程差等于两车的车长之和 (2) 两车相遇并错车:路程和等于两车的车长之和 三、 流水行船问题: ;。
16、第三讲 分数计算综合提高 本讲知识点汇总: 一、 分数计算技巧 1. 凑整 2. 分组 3. 提取公因数 4. 约分(整体约分) 二、 分数与循环小数互化 1. 分数化循环小数 2. 循环小数化分数 三、 比较与估算 四、 分数裂项 五、 分数数列、数表 例1 (1) 3333 9999991 4444 ; (2) 12399 234100 ; (3) 222 111 (1) (1)(1) 2399 ; (4) 111222989899 231003410099100100 分析分析大家还记得凑整、分组、约分等巧算方法吗? 练习 1、 111222181819 23203420192020 例2 (1) 1919191901901900190019 9898989809809800980098 ; (2) 166566。
17、第一讲 浓度与经济问题综合提高 本讲知识点汇总: 一、 基本公式 1 浓度问题 ; ; 2 经济问题 ; ; ; 注:浓度的范围是 0%100%,利润率可以超过 100% 二、 基本方法 1 不变量法 2 十字交叉法 例如: 200 克 20%的 A 溶液与 400 克 50%的 B 溶液混合, 可以得到 600 克 40%的溶液,此时有以下关系: 此时左边的重量比等于右边的浓度差之比,即 3 列表法 例1 要把 600 克浓度为 95%的酒精,稀释成浓度为 75%的消毒酒精,需要加入多少克蒸馏 水? (2)要配制 180 克 20%的硫酸溶液,需要 16%和 22%的硫酸溶液各多少克? 200:40010%:20% 2。
18、第十四讲 工程问题综合提高 本讲知识点汇总: 1. 工程问题基本公式: 工作量=工作效率 工作时间; 工作时间=工作量 工作效率; 工作效率=工作量 工作时间 2. 理解“单位 1”的概念并灵活应用; 3. 有的工程问题,工作效率往往隐藏在条件中,工作过程也较为复杂,要仔细梳理工 作过程、灵活运用基本数量关系; 工作量其实是一种分率,利用量率对应可以求出全部工作的具体数量 典型题型 1. 基本效率计算:最常见的工程问题,基本思路是根据工作过程计算效率,通过对效 率的分析计算时间 (1) 基本工程问题:关键在于效率的计算; (2) 中。
19、第二讲 余数问题综合提高 本讲知识点汇总: 一 求余数 1 直接做除法 2 特征求余(注意和整除特征对比) ; 3 替换求余 4 周期求余 5 分解求余 二 物不知数问题(求被除数) 1 也称“韩信点兵” ,关于它的解法,后人总结出“中国剩余定理” (也 称“孙子定理” ) 物不知数问题的基本解法是:逐步增加条件,逐步找寻 2 分解求余 三 同余 1 概念 如果 a 和 b 除以 c 的余数相同,则称 a、b 对 c 同余,例如:10 和 28 对 9 同余 2 如果 a、b 对 c 同余,则是 c 的倍数 例1 (1)418 814 1616除以 7、8、9、11 的余数分别是多少? (2) 89。
20、第四讲 曲线形问题综合提高 本讲知识点汇总: 一、 基本曲线形计算 1. 圆:2 Crd ; 22 2 44 dC Sr 2. 扇形:2 360 n lr ; 2 3 6 02 nlr Sr 3. 圆柱体:VSh 底 4. 圆锥体: 1 3 VSh 底 二、 曲线形计算技巧: 1. 割补法 2. 平移、旋转 3. 重叠(容斥) 例1 (1)如图 1,有一个长是 10、宽是 6 的长方形,那么两个阴影部分的面积之差为多 少?( 取 3.14) (2)如图 2,三角形 ABC 是直角三角形,AB 长 40 厘米,以 AB 为直径做半圆,阴影 部分比阴影部分的面积小 28 平方厘米求 AC 的长度 ( 取 3.14) 分析分析 (1)阴影是不规则图形。