高三数学二轮复习解答题标准练1

第二部分第四章第1讲 1(2018淮安)如图,在平面直角坐标系中,一次函数ykxb的图象经过点A(2,6),且与x轴相交于点B,与正比例函数y3x的图象相交于点C,点C的横坐标为1. (1)求k,b的值; (2)若点D在y轴负半轴上,且满足SCODSBOC,求点D的坐标 解:(1)当x1时,y3x3

高三数学二轮复习解答题标准练1Tag内容描述:

1、第二部分第四章第1讲1(2018淮安)如图,在平面直角坐标系中,一次函数ykxb的图象经过点A(2,6),且与x轴相交于点B,与正比例函数y3x的图象相交于点C,点C的横坐标为1.(1)求k,b的值;(2)若点D在y轴负半轴上,且满足SCODSBOC,求点D的坐标解:(1)当x1时,y3x3,点C的坐标为(1,3)将A(2,6),C(1,3)代入ykxb中,得,解得.(2)由(1)知,一次函数的解析式为yx4.当y0时,有x40,解得x4,点B的坐标为(4,0)设点D的坐标为(0,m)(m0)SCODSBOC,即m43,解得m4.点D的坐标为(0,4)2(2019安徽模拟)如图,反比例函数y的图象与一次函数yx的图象交于A,B两点(点。

2、第四章 解答题(三)突破10分题,第1讲 函数综合题,第二部分 专题突破,3,方法突破,一、待定系数法 【典例1】已知一次函数图象经过点(3,5),(4,9)两点 (1)求一次函数解析式; (2)求这个一次函数图象和x轴、y轴的交点坐标 【思路点拨】(1)设函数解析式为ykxb,利用待定系数法可求得k,b的值,可求得一次函数解析式;(2)分别令x0和y0,可求得图象与y轴和x轴的交点坐标,4,【方法归纳】用待定系数法求函数解析式是必须掌握的一种方法,要熟练掌掌握解二次一次方程组的解法,5,6,7,8,9,【思路点拨】(1)由反比例函数图象在第一象限可得2k1满足的条。

3、(三三)立体几何与空间向量立体几何与空间向量 1.(2019 哈尔滨第三中学模拟)如图所示,在四棱台 ABCDA1B1C1D1中,AA1底面 ABCD, 四边形 ABCD 为菱形,BAD120 ,ABAA12A1B12. (1)若 M 为 CD 中点,求证:AM平面 AA1B1B; (2)求直线 DD1与平面 A1BD 所成角的正弦值. (1)证明 四边形 ABCD 为菱形,BAD120 ,连接 AC,则ACD 为等边三角形, 又M 为 CD 中点,AMCD, 由 CDAB,得 AMAB. AA1底面ABCD, AM底面ABCD, AMAA1, 又ABAA1A, AB, AA1平面AA1B1B, AM平面 AA1B1B. (2)四边形 ABCD 为菱形,BAD120 ,ABAA12A1B12, DM1,AM 3,AMDBAM90。

4、(七七)坐标系与参数方程坐标系与参数方程 1.已知在平面直角坐标系 xOy 中,直线 l 的参数方程是 x 2 2 t, y 2 2 t4 2 (t 为参数),以原点 为极点,x 轴正半轴为极轴建立极坐标系,曲线 C 的极坐标方程为 2cos 4 . (1)判断直线 l 与曲线 C 的位置关系; (2)设 M 为曲线 C 上任意一点,求 xy 的取值范围. 解 (1)由 x 2 2 t, y 2 2 t4 2, 消去 t,得直线 l 的普通方程为 yx4 2. 由 2cos 4 , 得 2cos cos 42sin sin 4 2cos 2sin . 2 2cos 2sin , 即 x2 2xy2 2y0. 化为标准方程得 x 2 2 2 y 2 2 21. 圆心坐标为 2 2 , 2 2 ,半径为 1. 圆。

5、(八八)不等式选讲不等式选讲 1.(2019 天水市第一中学模拟)设函数 f(x)|2xa|x2|(xR,aR). (1)当 a1 时,求不等式 f(x)0 的解集; (2)若 f(x)1 在 xR 上恒成立,求实数 a 的取值范围. 解 (1)a1 时,f(x)0 可得|2x1|x2|,即(2x1)2(x2)2, 化简得:(3x3)(x1)0,所以不等式 f(x)0 的解集为(,1)(1,). (2)当 a0),求4 a 1 b的取值范围. 解 (1)由 f(x)1, 即|2x1|1,得12x11, 解得1x0. 即不等式的解集为x|1x0. (2)g(x)f(x)f(x1)|2x1|2x1| |2x1(2x1)|2, 当且仅当(2x1)(2x1)0, 即1 2x 1 2时取等号, m2. ab2(a,b0), 4 a 1 b 1 2(ab) 4 a 1 b 。

6、(四四)概率与统计概率与统计 1.随着智能手机的普及,使用手机上网成为了人们日常生活的一部分,很多消费者对手机流 量的需求越来越大.长沙某通信公司为了更好地满足消费者对流量的需求, 准备推出一款流量 包.该通信公司选了 5 个城市(总人数、经济发展情况、消费能力等方面比较接近)采用不同的 定价方案作为试点, 经过一个月的统计, 发现该流量包的定价 x(单位: 元/月)和购买人数 y(单 位:万人)的关系如表: 流量包的定价(元/月) 30 35 40 45 50 购买人数(万人) 18 14 10 8 5 (1)根据表中的数据,运用相关系数进行分析说明,是否可以。

7、(二二)数数 列列 1.(2019 蚌埠质检)已知数列an满足:a11,an12ann1. (1)设 bnann,证明:数列bn是等比数列; (2)设数列an的前 n 项和为 Sn,求 Sn. (1)证明 数列an满足:a11,an12ann1. 由 bnann,那么 bn1an1n1, bn 1 bn an 1n1 ann 2ann1n1 ann 2; 即公比 q2,b1a112, 数列bn是首项为 2,公比为 2 的等比数列. (2)解 由(1)可得 bn2n, ann2n, 数列an的通项公式为 an2nn, 数列an的前 n 项和为 Sn212222332nn (21222n)(123n) 2n 12n 2 2 n 2. 2.已知数列an,a11,a23,且满足 an2an4(nN*). (1)求数列an的通项公式; (2)若数列bn满足 。

8、70 分分 解答题标准练解答题标准练(三三) 1.ABC 的内角 A,B,C 的对边分别为 a,b,c,已知 1 2bsin C cos Asin Acos C,a2. (1)求 A; (2)求ABC 的面积的最大值. 解 (1)因为 1 2bsin C cos Asin Acos C, 所以1 2bcos Asin Ccos Asin Acos Csin(AC) sin B,所以bcos A 2sin B1, 由正弦定理得 b sin B a sin A 2 sin A, 所以bcos A 2sin B 2cos A 2sin A1,sin Acos A, 又 A(0,),所以 A 4. (2)由余弦定理 a2b2c22bccos A 得, b2c2 2bc4, 因为 b2c22bc. 所以 2bc42bc, 解得 bc2(2 2), 所以 SABC1 2bcsin A 2 4 bc 2 4 2(2 2) 21.。

9、70 分分 解答题标准练解答题标准练(二二) 1.(2019 南昌模拟)在ABC 中, 内角 A, B, C 的对边分别为 a, b, c, 已知cos A2cos C cos B 2ca b . (1)求sin C sin A的值; (2)若 cos B1 4,b2,求ABC 的面积. 解 (1)由正弦定理,得2ca b 2sin Csin A sin B , 所以cos A2cos C cos B 2sin Csin A sin B , 即(cos A2cos C)sin B(2sin Csin A)cos B, cos Asin B2cos Csin B2sin Ccos Bsin Acos B, cos Asin Bsin Acos B2sin Ccos B2cos Csin B. 化简得 sin(AB)2sin(BC), 又 ABC,所以 sin C2sin A, 因此sin C sin A2. (2)由sin C sin A。

10、70 分分 解答题标准练解答题标准练(四四) 1.已知在ABC 中,角 A,B,C 所对的边分别为 a,b,c,cos(2B2C)3cos A10,且 ABC 的外接圆的直径为 2. (1)求角 A 的大小; (2)若ABC 的面积为 2 3,求ABC 的周长; (3)当ABC 的面积取最大值时,判断ABC 的形状. 解 (1)由题意知 2A2B2C2,所以 cos(2B2C)3cos A1cos 2A3cos A10, 即 2cos2A3cos A20, 解得 cos A2(舍去)或 cos A1 2. 又 00 恒成立, 则 x1x2 4k 2k21,x1x2 2 2k21. 所以 xx1x2 2 2k 2k21, yk 2k 2k21 1 1 2k21, 两式联立,得 x22y22y0(y0). 又(0,0)适合上式, 故弦 PQ 的中点 M 。

11、 70 分分 解答题标准练解答题标准练(一一) 1.(2019 广州模拟)已知an是等差数列,且 lg a10,lg a41. (1)求数列an的通项公式; (2)若 a1,ak,a6是等比数列bn的前 3 项,求 k 的值及数列anbn的前 n 项和. 解 (1)数列an是等差数列,设公差为 d, 且 lg a10,lg a41. 则 a11, a13d10, 解得 d3, 所以 an13(n1)3n2. (2)若 a1,ak,a6是等比数列bn的前 3 项, 则 a2ka1 a6, 根据等差数列的通项公式得到 ak3k2, 代入上式解得 k2;a1,a2,a6是等比数列bn的前 3 项,a11,a24, 所以等比数列bn的公比为 q4. 由等比数列的通项公式得到 bn4n 1.。

【高三数学二轮复习解答题标】相关PPT文档
【高三数学二轮复习解答题标】相关DOC文档
标签 > 高三数学二轮复习解答题标准练1[编号:122075]