第第 2 讲讲 不等式不等式 1.(2019 武汉联考)下列命题中正确的是( ) A.若 ab,则 ac2bc2 B.若 ab,c b d C.若 ab,cd,则 acbd D.若 ab0,ab,则1 a 1 b 答案 D 解析 对于 A 选项,当 c0 时,不成立,故 A 选项错误.当 a1,b0
高三数学二轮复习分项练2 数列Tag内容描述:
1、第第 2 讲讲 不等式不等式 1.(2019 武汉联考)下列命题中正确的是( ) A.若 ab,则 ac2bc2 B.若 ab,c b d C.若 ab,cd,则 acbd D.若 ab0,ab,则1 a 1 b 答案 D 解析 对于 A 选项,当 c0 时,不成立,故 A 选项错误.当 a1,b0,c2,d1 时,a cb0,有下列命题: 若 a b1,则 abb0, 所以 00,得 01,求得 00, y0, 作出约束条件表示的可行域如图阴影部分所示. 可知 z2x3y 过 C()3,2 时,z 最小. z23320,即 2x3y. 8.(2019 德阳模拟)已知实数 x,y 满足 2xy20, x2y40, 3xy30, 若 yk(x1)1 恒成立,那么 k 的 取值范围是( ) A. 1 2,3 B.。
2、(四四)概率与统计概率与统计 1.(2019 全国)演讲比赛共有 9 位评委分别给出某选手的原始评分,评定该选手的成绩时, 从 9 个原始评分中去掉 1 个最高分、1 个最低分,得到 7 个有效评分.7 个有效评分与 9 个原 始评分相比,不变的数字特征是( ) A.中位数 B.平均数 C.方差 D.极差 答案 A 解析 记 9 个原始评分分别为 a,b,c,d,e,f,g,h,i(按从小到大的顺序排列),易知 e 为 7 个有效评分与 9 个原始评分的中位数,故不变的数字特征是中位数,故选 A. 2.(2019 东北三省三校模拟)将一枚质地均匀的硬币连掷三次,事件“恰出现 1 次反面朝。
3、(三三)立体几何立体几何 1.已知 a,b 为异面直线,下列结论不正确的是( ) A.必存在平面 ,使得 a,b B.必存在平面 ,使得 a,b 与 所成角相等 C.必存在平面 ,使得 a,b D.必存在平面 ,使得 a,b 与 的距离相等 答案 C 解析 由 a,b 为异面直线知,在 A 中,在空间中任取一点 O(不在 a,b 上),过点 O 分别作 a,b 的平行线,则由过点 O 的 a,b 的平行线确定一个平面 ,使得 a,b,故 A 正确; 在 B 中,平移 b 至 b与 a 相交,因而确定一个平面 ,在 上作 a,b夹角的平分线,明 显可以作出两条.过角平分线且与平面 垂直的平面 使得 a,。
4、(六六)函数与导数函数与导数 1.(2019 内蒙古模拟)已知函数 f(x) 2xx3,x0, ln x,x0, 则 f f 1 e 等于( ) A.1 B.1 C.3 2 D. 1 2 答案 C 解析 函数 f(x) 2xx3,x0, ln x,x0, f 1 e ln 1 e1, f f 1 e f(1)2 1(1)33 2. 2.(2019 唐山模拟)已知 alog32,blog43,clog0.20.3,则 a,b,c 的大小关系是( ) A.a 3 4 4 ,故 log43 4 3 4 log 4 , 即 b3 4, 又 10 3 4 4 3 4 5, 故10 3 3 4 5 , 故 log0.20.3 3 4 55 10 log0,故排除 D, 当 x时,f(x)0,故排除 B. 4.(2019 天津九校联考)已知函数 f(x) 。
5、(五五)解析几何解析几何 1.(2019 成都诊断)已知 aR 且为常数,圆 C:x22xy22ay0,过圆 C 内一点(1,2)的直 线 l 与圆 C 相交于 A, B 两点, 当弦 AB 最短时, 直线 l 的方程为 2xy0, 则 a 的值为( ) A.2 B.3 C.4 D.5 答案 B 解析 圆 C:x22xy22ay0, 化简为(x1)2(ya)2a21, 圆心坐标为 C(1,a),半径为 a21. 如图, 由题意可得,当弦 AB 最短时,过圆心与点(1,2)的直线与直线 2xy0 垂直. 则 a2 11 1 2,即 a3. 2.(2019 毛坦厂中学联考)已知 F1,F2两点是中心为原点的双曲线 C 的焦点,F1(0,5),P 是该 双曲线上一点,|PF1|PF2|6,则该双。
6、(二二)数数 列列 1.(2019 蚌埠质检)已知数列an满足:a11,an12ann1. (1)设 bnann,证明:数列bn是等比数列; (2)设数列an的前 n 项和为 Sn,求 Sn. (1)证明 数列an满足:a11,an12ann1. 由 bnann,那么 bn1an1n1, bn 1 bn an 1n1 ann 2ann1n1 ann 2; 即公比 q2,b1a112, 数列bn是首项为 2,公比为 2 的等比数列. (2)解 由(1)可得 bn2n, ann2n, 数列an的通项公式为 an2nn, 数列an的前 n 项和为 Sn212222332nn (21222n)(123n) 2n 12n 2 2 n 2. 2.已知数列an,a11,a23,且满足 an2an4(nN*). (1)求数列an的通项公式; (2)若数列bn满足 。
7、(二二)数数 列列 1.(2019 全国)已知各项均为正数的等比数列an的前 4 项和为 15,且 a53a34a1,则 a3 等于( ) A.16 B.8 C.4 D.2 答案 C 解析 设等比数列an的公比为 q,由 a53a34a1得 q43q24,得 q24,因为数列an 的各项均为正数,所以 q2,又 a1a2a3a4a1(1qq2q3)a1(1248)15,所 以 a11,所以 a3a1q24. 2.(2019 榆林模拟)在等差数列an中,其前 n 项和为 Sn,且满足 a3S512,a4S724,则 a5S9等于( ) A.24 B.32 C.40 D.72 答案 C 解析 a3S56a312,a4S78a424, a32,a43,a54, a5S910a540. 3.(2019 肇庆检测)记 Sn为等差数列an的前 n 项和,公。