高三数学二轮复习解答题突破练4 概率与统计

第二部分第四章第3讲 1(2017广东)如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连接BD,作DEDB交x轴于点E,以线段DE,DB为邻边作矩形BDEF. (1)填空:点B的坐标为(2,2);

高三数学二轮复习解答题突破练4 概率与统计Tag内容描述:

1、第二部分第四章第3讲1(2017广东)如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连接BD,作DEDB交x轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为(2,2);(2)是否存在这样的点D,使得DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)求证:;设ADx,矩形BDEF的面积为y,求y关于x的函数关系式(可利用的结论),并求出y的最小值解:(1)四边形AOCB是矩形,BCOA2,OCAB2.B(2,2)(2)存在理由如下:连接BE,取BE的中点K,连。

2、(八八)不等式选讲不等式选讲 1.(2019 天水市第一中学模拟)设函数 f(x)|2xa|x2|(xR,aR). (1)当 a1 时,求不等式 f(x)0 的解集; (2)若 f(x)1 在 xR 上恒成立,求实数 a 的取值范围. 解 (1)a1 时,f(x)0 可得|2x1|x2|,即(2x1)2(x2)2, 化简得:(3x3)(x1)0,所以不等式 f(x)0 的解集为(,1)(1,). (2)当 a0),求4 a 1 b的取值范围. 解 (1)由 f(x)1, 即|2x1|1,得12x11, 解得1x0. 即不等式的解集为x|1x0. (2)g(x)f(x)f(x1)|2x1|2x1| |2x1(2x1)|2, 当且仅当(2x1)(2x1)0, 即1 2x 1 2时取等号, m2. ab2(a,b0), 4 a 1 b 1 2(ab) 4 a 1 b 。

3、第二部分第三章第4讲1(2019长沙期中)为了绿化环境,某中学八年级(3)班同学都积极参加了植树活动,下面是今年3月份该班同学植树情况的扇形统计图和不完整的条形统计图:请根据以上统计图中的信息解答下列问题(1)植树3株的人数为12;(2)该班同学植树株数的中位数是2;(3)求该班同学平均植树的株数解:(1)八年级(3)班的总人数为2040%50(人),植树3株的人数为50(102062)12(人),故答案为12.(2)该班同学植树株数的中位数是第25、26个数据的平均数,而第25和26个数据均为2株,所以该班同学植树株数的中位数是2株(3)该班同学平均植树的株数为(101。

4、(三三)立体几何与空间向量立体几何与空间向量 1.(2019 哈尔滨第三中学模拟)如图所示,在四棱台 ABCDA1B1C1D1中,AA1底面 ABCD, 四边形 ABCD 为菱形,BAD120 ,ABAA12A1B12. (1)若 M 为 CD 中点,求证:AM平面 AA1B1B; (2)求直线 DD1与平面 A1BD 所成角的正弦值. (1)证明 四边形 ABCD 为菱形,BAD120 ,连接 AC,则ACD 为等边三角形, 又M 为 CD 中点,AMCD, 由 CDAB,得 AMAB. AA1底面ABCD, AM底面ABCD, AMAA1, 又ABAA1A, AB, AA1平面AA1B1B, AM平面 AA1B1B. (2)四边形 ABCD 为菱形,BAD120 ,ABAA12A1B12, DM1,AM 3,AMDBAM90。

5、(七七)坐标系与参数方程坐标系与参数方程 1.已知在平面直角坐标系 xOy 中,直线 l 的参数方程是 x 2 2 t, y 2 2 t4 2 (t 为参数),以原点 为极点,x 轴正半轴为极轴建立极坐标系,曲线 C 的极坐标方程为 2cos 4 . (1)判断直线 l 与曲线 C 的位置关系; (2)设 M 为曲线 C 上任意一点,求 xy 的取值范围. 解 (1)由 x 2 2 t, y 2 2 t4 2, 消去 t,得直线 l 的普通方程为 yx4 2. 由 2cos 4 , 得 2cos cos 42sin sin 4 2cos 2sin . 2 2cos 2sin , 即 x2 2xy2 2y0. 化为标准方程得 x 2 2 2 y 2 2 21. 圆心坐标为 2 2 , 2 2 ,半径为 1. 圆。

6、第三章 解答题(二)突破8分题,第4讲 统计与概率,第二部分 专题突破,3,一、统计 【典例1】(2019无锡)国家学生体质健康标准规定:体质测试成绩达到90.0分及以上的为优秀;达到80.0分至89.9分的为良好;达到60.0分至79.9分的为及格;59.9分及以下为不及格某校为了了解九年级学生体质健康状况,从该校九年级学生中随机抽取了10%的学生进行体质测试,测试结果如下面的统计表和扇形统计图所示,方法突破,4,各等级学生平均分统计表,5,(1)扇形统计图中“不及格”所占的百分比是_; (2)计算所抽取的学生的测试成绩的平均分; (3)若所抽取的学生中所有。

7、(二二)数数 列列 1.(2019 蚌埠质检)已知数列an满足:a11,an12ann1. (1)设 bnann,证明:数列bn是等比数列; (2)设数列an的前 n 项和为 Sn,求 Sn. (1)证明 数列an满足:a11,an12ann1. 由 bnann,那么 bn1an1n1, bn 1 bn an 1n1 ann 2ann1n1 ann 2; 即公比 q2,b1a112, 数列bn是首项为 2,公比为 2 的等比数列. (2)解 由(1)可得 bn2n, ann2n, 数列an的通项公式为 an2nn, 数列an的前 n 项和为 Sn212222332nn (21222n)(123n) 2n 12n 2 2 n 2. 2.已知数列an,a11,a23,且满足 an2an4(nN*). (1)求数列an的通项公式; (2)若数列bn满足 。

8、70 分分 解答题标准练解答题标准练(四四) 1.已知在ABC 中,角 A,B,C 所对的边分别为 a,b,c,cos(2B2C)3cos A10,且 ABC 的外接圆的直径为 2. (1)求角 A 的大小; (2)若ABC 的面积为 2 3,求ABC 的周长; (3)当ABC 的面积取最大值时,判断ABC 的形状. 解 (1)由题意知 2A2B2C2,所以 cos(2B2C)3cos A1cos 2A3cos A10, 即 2cos2A3cos A20, 解得 cos A2(舍去)或 cos A1 2. 又 00 恒成立, 则 x1x2 4k 2k21,x1x2 2 2k21. 所以 xx1x2 2 2k 2k21, yk 2k 2k21 1 1 2k21, 两式联立,得 x22y22y0(y0). 又(0,0)适合上式, 故弦 PQ 的中点 M 。

9、(四四)概率与统计概率与统计 1.(2019 全国)演讲比赛共有 9 位评委分别给出某选手的原始评分,评定该选手的成绩时, 从 9 个原始评分中去掉 1 个最高分、1 个最低分,得到 7 个有效评分.7 个有效评分与 9 个原 始评分相比,不变的数字特征是( ) A.中位数 B.平均数 C.方差 D.极差 答案 A 解析 记 9 个原始评分分别为 a,b,c,d,e,f,g,h,i(按从小到大的顺序排列),易知 e 为 7 个有效评分与 9 个原始评分的中位数,故不变的数字特征是中位数,故选 A. 2.(2019 东北三省三校模拟)将一枚质地均匀的硬币连掷三次,事件“恰出现 1 次反面朝。

10、(四四)概率与统计概率与统计 1.随着智能手机的普及,使用手机上网成为了人们日常生活的一部分,很多消费者对手机流 量的需求越来越大.长沙某通信公司为了更好地满足消费者对流量的需求, 准备推出一款流量 包.该通信公司选了 5 个城市(总人数、经济发展情况、消费能力等方面比较接近)采用不同的 定价方案作为试点, 经过一个月的统计, 发现该流量包的定价 x(单位: 元/月)和购买人数 y(单 位:万人)的关系如表: 流量包的定价(元/月) 30 35 40 45 50 购买人数(万人) 18 14 10 8 5 (1)根据表中的数据,运用相关系数进行分析说明,是否可以。

标签 > 高三数学二轮复习解答题突破练4 概率与统计[编号:86777]