坐标系与参数方程 考向一:极坐标方程 极坐标 一般地,不作特殊说明时,我们认为0,可取任意实数 极坐标与直角坐标的互化 设M是平面内任意一点,它的直角坐标是(x,y),极坐标是(,),则它们之间的关系为: 1、2016全国,23在直角坐标系xOy中,圆C的方程为(x6)2y225. (1)以坐标原点
高考数学二轮复习抛物线学案含解析Tag内容描述:
1、坐标系与参数方程考向一:极坐标方程极坐标一般地,不作特殊说明时,我们认为0,可取任意实数极坐标与直角坐标的互化设M是平面内任意一点,它的直角坐标是(x,y),极坐标是(,),则它们之间的关系为:1、2016全国,23在直角坐标系xOy中,圆C的方程为(x6)2y225.(1)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(2)直线l的参数方程是(t为参数),l与C交于A,B两点,|AB|,求l的斜率解(1)由xcos,ysin可得圆C的极坐标方程212cos110.(2)在(1)中建立的极坐标系中,直线l的极坐标方程为(R)设A,B所对应的极径分别为1,2,将。
2、双曲线问题考向一:双曲线的定义与焦点三角形1、在双曲线的定义中,要注意双曲线上的点(动点)具备的几何条件,即“到两定点(焦点)的距离之差的绝对值为一常数,且该常数必须小于两定点间的距离”若定义中的“绝对值”去掉,点的轨迹是双曲线的一支同时需注意定义的转化应用2、在焦点三角形中,注意定义、余弦定理的活用,常将|PF1|PF2|2a平方,建立与|PF1|、|PF2|间的联系1.2016全国,11已知F1、F2是双曲线E:1的左、右焦点,点M在E上,MF1与x轴垂直,sinMF2F1,则E的离心率为()ABCD2答案A解析:解法一:由MF1x轴,可得M,|MF1|.由sinMF2F。
3、椭圆考向一:椭圆定义及焦点三角形1、【2019年高考全国卷理数】已知椭圆C的焦点为,过F2的直线与C交于A,B两点若,则C的方程为ABCD【解析】如图,由已知可设,则,由椭圆的定义有在中,由余弦定理推论得在中,由余弦定理得,解得所求椭圆方程为,故选B2、【2019年高考全国卷理数】设为椭圆C:的两个焦点,M为C上一点且在第一象限.若为等腰三角形,则M的坐标为_.【解析】由已知可得,设点的坐标为,则,又,解得,解得(舍去),的坐标为巩固迁移:(2018安徽皖江模拟)已知F1,F2是长轴长为4的椭圆C:1(ab0)的左、右焦点,P是椭圆上一点,则P。
4、第 2 讲 椭圆、双曲线、抛物线年份 卷别 考查内容及考题位置 命题分析卷直线与抛物线的位置关系T 8 双曲线的几何性质T 11卷双曲线的几何性质T 5 椭圆的几何性质T 122018卷双曲线的几何性质T 11 直线与抛物线的位置关系T 16直线与抛物线的位置关系、弦长公式、基本不等式的应用T 10卷双曲线的几何性质T 15卷 双曲线的几何性质T 92017卷 双曲线的渐近线及标准方程T 5双曲线的几何性质与标准方程T 5卷抛物线与圆的综合问题T 10卷 双曲线的定义、离心率问题T 112016卷直线与椭圆的位置关系、椭圆的离心率T 111.圆锥曲线的定义、方程与性质是每。
5、专题二十一专题二十一 椭圆、双曲线、抛物线的几何性质的应用椭圆、双曲线、抛物线的几何性质的应用 总分总分 150 分分 时间时间 120 分钟分钟 班级班级 _ 学号学号 _ 得分得分_ 一、一、单项单项选择题选择题(8*5=40 分分) 1(2021 北京怀柔模拟)曲线 22 1 53 xy 与曲线 22 1 35 xy 的( ) A焦距相等 B实半轴长相等。
6、专题二十一专题二十一 椭圆、双曲线、抛物线的几何性质的应用椭圆、双曲线、抛物线的几何性质的应用 圆锥曲线与方程是高考考查的核心内容之一,在高考中一般有 12 个选择或者填空题,一个解答题选择 或者填空题有针对性地考查椭圆、双曲线、抛物线的定义、标准方程和简单几何性质及其应用,主要针对圆锥 曲线本身,综合性较小,试题的难度一般不大;解答题主要是以椭圆为基本依托,考查椭圆方程的求解、考查 直线与曲线的。
7、专题专题二十一二十一 椭圆、双曲线、抛物线的几何性质的应用椭圆、双曲线、抛物线的几何性质的应用 一、练高考一、练高考 1【2020 年高考全国卷理数 4】 已知A为抛物线 2 :20C ypx p上一点, 点A到C的焦点的距离为12, 到y轴的距离为9,则p ( ) A2 B3 C6 D9 【答案】C 【思路导引】利用抛物线的定义建立方程即可得到答案 【解析】设抛物线的焦点为 F,由抛物线的定义知。
8、专题六专题六 解析几何解析几何 第二编 讲专题 第第2 2讲讲 椭圆、双曲线、抛物线椭圆、双曲线、抛物线 考情研析 1.考查圆锥曲线的定义、方程及几何性质,特别是椭圆、 双曲线的离心率和双曲线的渐近线 2.以解答题的形式考查直线与圆锥曲 线的位置关系(弦长、中点等). 1 核心知识回顾核心知识回顾 PART ONE 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 。
9、抛物线考向一:抛物线定义抛物线上的点到焦点的距离和到准线的距离相等,注意在解题中利用两者之间相互转化。1、(2016浙江高考)若抛物线y24x上的点M到焦点F的距离为10,则M到y轴的距离是_解析设M(x0,y0),由抛物线的方程知焦点F(1,0)根据抛物线的定义得|MF|x0110,x09,即点M到y轴的距离为9.条件探究:将条件变为“在抛物线上找一点M,使|MA|MF|最小,其中A(3,2)”求点M的坐标及此时的最小值解如图,点A在抛物线y24x的内部,由抛物线的定义可知,|MA|MF|MA|MH|,其中|MH|为点M到抛物线的准线的距离过A作抛物线准线的垂线交抛物线于M1,垂。