第7章解析几何初步 章末检测卷含答案

第1章 三角形的初步认识 章末检测卷 一选择题本大题共12小题,每小题3分,共36分在每小题所给出的四个选项中,只有一项是符合题目要求的 1.2021浙江八年级期中如图,点DE分别是ABC的边ABAC上的点,CDBE交于点F,现给出下面两个,第第 4 章章 几何图形初步几何图形初步 一选择题每小题

第7章解析几何初步 章末检测卷含答案Tag内容描述:

1、第1章 三角形的初步认识 章末检测卷 一选择题本大题共12小题,每小题3分,共36分在每小题所给出的四个选项中,只有一项是符合题目要求的 1.2021浙江八年级期中如图,点DE分别是ABC的边ABAC上的点,CDBE交于点F,现给出下面两个。

2、第第 4 章章 几何图形初步几何图形初步 一选择题每小题 3 分,共 30 分 1.生活中的实物可以抽象出各种各样的几何图形,如图所示蛋糕的形状类似于 A.圆柱 B.球 C.圆 D.圆锥 第 1 题图 2.下列说法正确的是 A.两点确定一条。

3、章末检测试卷(二)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1若直线过点(1,2),(4,2),则此直线的倾斜角是()A30 B45 C60 D90答案A解析利用斜率公式ktan ,可得倾斜角为30.2已知0r1,则两圆x2y2r2与(x1)2(y1)22的位置关系是()A外切 B相交 C外离 D内含答案B解析设圆(x1)2(y1)22的圆心为O,则O(1,1)两圆的圆心距离d.显然有|r|r.所以两圆相交3若直线axby1与圆x2y21有公共点,则()Aa2b21 Ba2b21C.1 D.1答案B解析若直线axby1与圆x2y21有公共点,则1,即a2b21.4与直线3x4y50关于x轴对称的直线方程为()。

4、章末检测试卷(二)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知直线l的倾斜角为135,则直线l的斜率为()A.1 B.1 C. D.答案A解析由tan 1351可知,直线l的斜率为1.2.若a,则方程x2y2ax2ay2a2a10表示的圆的个数为()A.4 B.3 C.2 D.1答案D解析方程x2y2ax2ay2a2a10,即方程2(ya)21aa2,当1aa20,即2a时,方程表示以为圆心, 为半径的圆.所以所给的方程表示圆的个数为1.3.若直线x2y50与直线2xmy60互相垂直,则实数m等于()A.1 B.1 C. D.答案B解析由两直线垂直,得1,解得m1.4.设点B是点A(2,3,5)关于xOy平面的对。

5、 章末检测卷(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1观察图中四个几何体,其中判断正确的是()A(1)是棱台 B(2)是圆台C(3)是棱锥 D(4)不是棱柱答案C解析结合柱、锥、台、球的定义可知(3)是棱锥,(4)是棱柱,故选C.2.如图,OAB是水平放置的OAB的直观图,则OAB的面积为()A6 B3C6 D12答案D解析由斜二测画法规则可知,OAB为直角三角形,且两直角边长分别为4和6,故面积为12.3设m,n是两条不同的直线,是两个不同的平面()A若m,n,则mn B若m,m,则C若mn,m,则n D若m,则m答案C解析可以借助正方体模型。

6、章末检测卷(二)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.在空间直角坐标系中,点A(3,4,0)与点B(2,1,6)的距离是()A.2B.2C.9D.答案D解析由空间直角坐标系中两点间距离公式得:|AB|.2.点A(2a,a1)在以点C(0,1)为圆心,半径为的圆上,则a的值为()A.1B.0或1C.1或D.或1答案D解析由题意,已知圆的方程为x2(y1)25,将点A的坐标代入圆的方程可得a1或a.3.已知直线l的方程为yx1,则直线l的倾斜角为()A.30B.45C.60D.135答案D解析由题意可知,直线l的斜率为1,故由tan1351,可知直线l的倾斜角为135.4.点(1,1)到直。

7、章末检测试卷(二)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1直线xy10的倾斜角与在y轴上的截距分别是()A60,1 B60,1C45,1 D45,1答案D2直线xay70与直线(a1)x2y140互相平行,则a的值是()A1 B2C1或2 D1或2答案B解析当a1时,显然两直线不平行,a1.由,得a2.3经过点(2,1)且与直线xy50垂直的直线的方程是()Axy30 Bxy30Cxy30 Dxy30答案D解析因为所求的直线与直线xy50垂直,故所求直线的斜率为1.又直线经过点(2,1),故所求直线的方程为y1x2,即xy30.4已知A(1t,1t,t),B(2,t,t),则A,B两点间距离的最小值。

8、章末复习课网络构建核心归纳1点的坐标(1)两点间距离公式:两点P1(x1,y1),Q(x2,y2)间的距离|PQ|.(2)定比分点坐标公式:分两点A(x1,y1),B(x2,y2)所构成的有向线段为定比的分点的坐标为(,)(3)三角形重心坐标公式:以(x1,y1),(x2,y2),(x3,y3)为顶点的三角形的重心坐标为(,)(4)三角形面积的公式:以向量(x1,y1),(x2,y2)为两边的三角形的面积S|x1y2x2y1|.2直线与方程(1)直线法向量的应用直线垂直于向量(A,B)(法向量)直线方程AxByC0(C待定)两条直线平行或重合它们的法向量平行两条直线相交它们的法向量不平行两直线垂直它们的法。

标签 > 第7章解析几何初步 章末检测卷含答案[编号:95775]