初二数学讲义春季 直升班 第1讲 二次根式一教师版

第第 3 3 讲讲 一元二次方程的判别式与根系关系一元二次方程的判别式与根系关系 模块一模块一 一元二次方程的判别式一元二次方程的判别式 1 1定义:定义: 在一元二次方程()axbxca 中,只有当系数a、b、c满足条件bac 时才有实数根这 里bac 叫做一元二次方程根的判别式,记作 2 2判别

初二数学讲义春季 直升班 第1讲 二次根式一教师版Tag内容描述:

1、第第 3 3 讲讲 一元二次方程的判别式与根系关系一元二次方程的判别式与根系关系 模块一模块一 一元二次方程的判别式一元二次方程的判别式 1 1定义:定义: 在一元二次方程()axbxca 中,只有当系数a、b、c满足条件bac 时才有实数根这 里bac 叫做一元二次方程根的判别式,记作 2 2判别式与根的关系:判别式与根的关系: 在实数范围内,一元二次方程()axbxca 的根的情况由 bac 。

2、第第 2 2 讲讲 可化为一元二次方程的其他方程可化为一元二次方程的其他方程 模块一模块一 可化为一元二次方程的高次方程可化为一元二次方程的高次方程 在遇到这类可转化为一元二次方程的高次方程时,通常有两种转化方法 1 1因式分解法:因式分解法: 如果所遇到的高次方程可以因式分解成两个或者多个一元二次式或一元一次式的乘积的形式,可以用因式 分解法 2 2整体换元法:整体换元法: 在一个式子中要善于观。

3、第第 4 4 讲讲 一元二次方程的特殊根问题一元二次方程的特殊根问题 模块一模块一 一元二次方程的公共根一元二次方程的公共根 1 1一元二次方程公共根问题的一般解法:一元二次方程公共根问题的一般解法: (1)如果公共根可以根据其中一个方程求出,则先求出公共根,代入另外一个方程,得到某一个参数的一 个方程,解得参数 (2)如果公共根不能直接求出,则先设出公共根,然后代入原方程,通过恒等变形求出参数的。

4、第第 5 5 讲讲 一元二次方程的构造及应用一元二次方程的构造及应用 模块一模块一 利用根的定义构造方程利用根的定义构造方程 如果m、n分别是一元二次方程()axbxca 的两根,那么有ambmc ,anbnc ,相 反的,如果已知m、n分别满足ambmc ,anbnc ,且a ,那就可以构造一个一元二次方程 ()axbxca 使得m、n是它的解 模块二模块二 利用根系关系构造方程利用根系关系。

5、 第第 1414 讲讲 一次函数和几何综合(一)一次函数和几何综合(一) 模块一:直线与坐标轴围成的面积模块一:直线与坐标轴围成的面积 1一条直线和坐标轴围成的面积一条直线和坐标轴围成的面积 (1)求一次函数ykxb和坐标轴的交点坐标,即(0, )b和, 0 b k ; (2)直线和坐标轴围成的面积: 1 | | 2 b Sb k 2两条直线和坐标轴围成的面积两条直线和坐标轴围成的面积 。

6、 第十二讲第十二讲 一次函数和代数综合一次函数和代数综合 模块模块一一:一次函数一次函数(0)ykxb k图像图像的的变换及特殊位置关系:变换及特殊位置关系: 1平移平移:上加下减,左加右减; 2对称对称:关于哪轴对称那轴对应坐标不变,另外一个变为原来的相反数; 3中心对称:中心对称:x 和 y 值都变 4三大变换通解方法:三大变换通解方法:找两个点(如与坐标轴的两个交点) ,进行相应变化后。

7、 第第 1313 讲讲 函数初步及一次函数函数初步及一次函数 模块一:函数初步模块一:函数初步 1常量常量与变量的与变量的概念概念:在一些变化过程中,有一种量,它的取值始终保持不变,我们称之为常量;在一 些变化过程中,有一种量,可以取不同数值的量,叫做变量 2函数的概念函数的概念:在某一变化过程中,有两个量 x 和 y,对于 x 的每一个值,y 都有唯唯 一一 的值与之对应,此 时称 y 是 。

8、 第十六讲第十六讲 一次函数和代数综合一次函数和代数综合 模块一:模块一:一次函数一次函数(0)ykxb k图像图像的的变换及特殊位置关系:变换及特殊位置关系: 1平移平移:上加下减,左加右减; 2对称对称:关于哪轴对称那轴对应坐标不变,另外一个变为原来的相反数; 3中心对称:中心对称:x 和 y 值都变 4三大变换通解方法:三大变换通解方法:找两个点(如与坐标轴的两个交点) ,进行相应变化后。

9、 第第 1515 讲讲 一次函数和几何综一次函数和几何综合(二)合(二) 模块一:一次函数和将军饮马模型综合模块一:一次函数和将军饮马模型综合 “将军饮马”问题比较经典,近两年常出现在压轴题的第 2、3 问,但是在考试中往往不是单一出现,而是 “将军饮马”模型和一次函数、勾股定理、特殊的四边形结合在一起考试,综合考察 模型模型 I:最小问题:最小问题 模型模型 II:最大问题:最大问题 。

10、 第第 2 2 讲讲 二次根式(二)二次根式(二) 模块一:二次根式的大小比较模块一:二次根式的大小比较 1估算法:21.414,31.732,52.236 2平方法:若 22 ab(0a 且0b ) ,则ab 3带分母的二次根式比较大小: (1)分母有理化:转化为分母一样,比较分子的大小 (2)分子有理化:转化为分子一样,比较分母的大小 4作差作商:作差和 0 比较大小,作商和 1 比较大小 模。

11、 第第 1 1 讲讲 二次根式(一)二次根式(一) 模块一:二次根式的基本概念模块一:二次根式的基本概念 1二次根式:二次根式: 一般地,形如(0)a a 的代数式叫做二次根式,a 叫做被开方数 2n 次根式:次根式: 形如 n a的代数式叫做 n 次根式,其中若 n 为偶数,则必须满足0a 3最简二次根式:最简二次根式: 满足以下两个条件的二次根式叫做最简二次根式: 一般地,被开方数不含分母,即。

标签 > 初二数学讲义春季 直升班 第1讲 二次根式一教师版[编号:98168]