北师大版九年级数学上思维特训八含答案k值法的妙用

思维特训(七) 一元二次方程根与系数关系的运用技巧一元二次方程 ax2bx c 0(a0)的两实数根分别是 x1,x 2,则 x1x 2 ,x 1x2 .ba ca这是一元二次方程根与系数的关系,运用这一关系可解决下列问题:(1)已知方程的一个根,求另一个根方法:利用两根之和或两根之积列方程求解;(

北师大版九年级数学上思维特训八含答案k值法的妙用Tag内容描述:

1、思维特训(七) 一元二次方程根与系数关系的运用技巧一元二次方程 ax2bx c 0(a0)的两实数根分别是 x1,x 2,则 x1x 2 ,x 1x2 .ba ca这是一元二次方程根与系数的关系,运用这一关系可解决下列问题:(1)已知方程的一个根,求另一个根方法:利用两根之和或两根之积列方程求解;(2)求与两根有关的代数式的值方法:将所给的代数式变形,使其出现两根之和或两根之积;(3)求方程中字母系数的值方法:根据已知条件并借助根与系数的关系列出关于字母系数的方程或不等式;(4)求作方程方法:逆用根与系数的关系确定一次项系数及常数项类型一 已知一根。

2、思维特训(六) 与一元二次方程有关的阅读理解阅读材料型题是近年来中考试题中出现的新题型,它以内容丰富、构思新颖别致、题型多样为特点,由阅读材料和解决问题两部分组成,让考生在阅读的基础上,理解其中的内容、方法和思想,进而解决问题解答阅读理解题,要读懂材料,正确理解题意,弄清题目要求,理清问题与材料之间的关系把问题带到题目中,认真理解材料所提供的思路,多角度去思考,或直接运用阅读中得到的方法、思想解决问题,或在材料中所提供的信息的基础上加以类比、变式、拓展得到类似的方法进行求解类型一 十字相乘法解一元二。

3、思维特训(十一) 相似三角形中的辅助线作法归类在添加辅助线时,所添加的辅助线往往能构造出一组或多组相似三角形,或得到成比例的线段,或得出等角、等边,从而为证明三角形相似或进行有关的计算找到等量关系作辅助线的方法主要有以下几种:(1)作平行线构造“A ”型或“X”型相似;(2)作平行线转换线段比;(3)作垂直证明相似图 11S1类型一 作平行线构造“A”型或“X”型相似1如图 11S2,已知平行四边形 ABCD 中,对角线 AC,BD 相交于点 O,E 为 AB延长线上一点,OE 交 BC 于点 F,若 ABa,BCb,BEc,求 BF 的长图 11S22如图 11S3,在ABC 。

4、思维特训(九) 相似三角形的基本模型几何图形大都由基本图形复合而成,因此熟悉三角形相似的基本图形,有助于我们快速、准确地识别相似三角形,从而顺利找到解题思路和方法类型一 平行线型如图 9S1,若 DEBC,则ADEABC,形象地说图为“A”型,图为“X”型,它们都是平行线型的基本图形图 9S11如图 9S2,在ABCD 中,E 是 AB 延长线上一点,连接 DE 交 AC 于点 G,交BC 于点 F,则图中相似三角形 (不含全等三角形)共有_ 对图 9S22如图 9S3,已知 ECAB,EDA ABF.求证:OA 2OE OF.图 9S3类型二 相交线型常见的有如下三种情形:如图 9S4,已知1B。

5、思维特训(十四) 反比例函数的综合应用与反比例函数图象有关的探索问题主要体现在两个方面,一是探索存在性,二是探究图形的形状及数量关系等解决有关问题需要把反比例函数的图象及图形的性质等综合在一起,还有要注意一些数学思想的灵活应用类型一 存在性问题1如图 14S1,一次函数 yk 1xb(k 10)与反比例函数 y (k20)的图象相交k2x于点 A(1,2),B(m,1)(1)求这两个函数的表达式(2)在 x 轴上是否存在点 P(n,0)( n0),使ABP 为等腰三角形?若存在 ,求出 n 的值;若不存在,请说明理由图 14S12如图 14S2,一次函数 y x1 的图象与 x 轴、 y 。

6、思维特训(一) 正方形的旋转变换解决与正方形旋转有关的题目,需要将旋转的性质与正方形的性质相结合,通过借助特殊的三角形、全等三角形、相似三角形等知识寻找解题思路1如图 1S1,在正方形 ABCD 中,点 E,F 分别在 BC,CD 上,且EAF45,将ABE 绕点 A 顺时针旋转 90,使点 E 落在点 E处,连接 EE,则下列判断不正确的是( )图 1S1AAEE 是等腰直角三角形BAF 垂直平分 EECEECAFDDAEF 是等腰三角形2如图 1S2,正方形 ABCD 和正方形 CEFG 的边长分别为 a 和 b,正方形 CEFG绕点 C 旋转,给出下列结论: BE DG;BEDG;DE 2BG 22a 22b 2,其中正。

7、思维特训(十) 几何动态问题中的相似1我们以运动的观点探究几何图形的变化规律的问题称为动态几何问题随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现的图形的位置、数量关系的“变”与“不变”性的试题2点动型就是在三角形、矩形、梯形等一些几何图形上,设计一个或几个动点,并对这些点在运动变化的过程中产生的数量关系、变量关系、图形的特殊状态、图形间的特殊关系等进行研究3解决此类动点几何问题常用的是“类比发现法” ,也就是通过对两个或几个相类似数学研究对象的异同,进行观察和比较,从一个容易探索的研究对。

8、思维特训( 八) k 值法的妙用学习了比例的性质后,经常遇到和比例有关的问题,解决此类问题常用的方法是“设k 值” 利用这种方法可以巧妙地解决许多问题 “设 k 值”法在解题中的应用不止以下五个方面,随着所学知识的增加,你还会发现它更多的妙用类型一 用于化简求值1已知 ,求 的值x2 y3 z4 xy yz 3zxx2 y2 z2类型二 用于解方程组2解方程组: x2 y3,x y 20.)类型三 用于比较大小3已知 a,b,c,d 是互不相等的实数,其中 a 最小,d 最大,且满足 ,试判断ab cdad 与 bc 的大小类型四 用于解决几何问题4已知 a,b,c 为ABC 的三条边长,。

标签 > 北师大版九年级数学上思维特训八含答案k值法的妙用[编号:148453]