冀教版九年级数学下册30.5二次函数与一元二次方程的关系课件

思维特训(七) 一元二次方程根与系数关系的运用技巧一元二次方程 ax2bx c 0(a0)的两实数根分别是 x1,x 2,则 x1x 2 ,x 1x2 .ba ca这是一元二次方程根与系数的关系,运用这一关系可解决下列问题:(1)已知方程的一个根,求另一个根方法:利用两根之和或两根之积列方程求解;(

冀教版九年级数学下册30.5二次函数与一元二次方程的关系课件Tag内容描述:

1、思维特训(七) 一元二次方程根与系数关系的运用技巧一元二次方程 ax2bx c 0(a0)的两实数根分别是 x1,x 2,则 x1x 2 ,x 1x2 .ba ca这是一元二次方程根与系数的关系,运用这一关系可解决下列问题:(1)已知方程的一个根,求另一个根方法:利用两根之和或两根之积列方程求解;(2)求与两根有关的代数式的值方法:将所给的代数式变形,使其出现两根之和或两根之积;(3)求方程中字母系数的值方法:根据已知条件并借助根与系数的关系列出关于字母系数的方程或不等式;(4)求作方程方法:逆用根与系数的关系确定一次项系数及常数项类型一 已知一根。

2、22.2.5 一元二次方程的根与系数的关系,第22章 一元二次方程,驶向胜利的彼岸,1.一元二次方程的一般形式是什么?,3.一元二次方程的根的情况怎样确定?,2.一元二次方程的求根公式是什么?,复习导入,解下列方程,将得到的解填入下面的表格中,你发现表格中的两个解的和与积和原来的方程的系数有什么联系?,-4,0,2,2,0,1,-3,-4,2,3,5,6,探索新知,探索1一般地,对于关于x的方程x2+p x+q=0 (p、q为已知常数,p2-4q0),试用求根公式求出它的两个解x1、x2, 算一算x1+x2、x1、x2 的值,你能发现什么结论?与前面的观察的结果是否一致?,关于x的方。

3、2121. .2 2 解解一元二次方程一元二次方程 21.2 21.2 解解一元二次方程一元二次方程 21.2.4 21.2.4 一元二次方程的根与系数一元二次方程的根与系数 的的关系关系 人教版人教版 数学数学 九九年级年级 上册上册 2。

4、17.4 一元二次方程的根与 系数的关系,第17章 一元二次方程,导入新课,讲授新课,当堂练习,课堂小结,学习目标,1.探索一元二次方程的根与系数的关系.(难点) 2.不解方程利用一元二次方程的根与系数的关系解决问题.(重点),导入新课,复习引入,1.一元二次方程的求根公式是什么?,想一想:方程的两根x1和x2与系数a,b,c还有其它关系吗?,2.如何用判别式 b2 - 4ac 来判断一元二次方程根的情况?,对一元二次方程: ax2 + bx +c = 0(a0) b2 - 4ac 0 时,方程有两个不相等的实数根. b2 - 4ac = 0 时,方程有两个相等的实数根. b2 - 4ac 0 时,方程无实。

5、,导入新课,讲授新课,当堂练习,课堂小结,30.4 二次函数的应用,第3课时 将二次函数问题转化为一元二次方程问题,第三十章 二次函数,学习目标,1.根据题意求出二次函数;(重点) 2.根据给定的函数值,将二次函数转化为一元二次方程求解;(重点) 3.根据给定的函数值的范围,将二次函数转化为一元二次不等式或不等式组求解.(难点),导入新课,情境引入,问题 如图,以40m/s的速度将小球沿与地面成30角的方向击出时,球的飞行路线将是一条抛物线,如果不考虑空气的阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系:h=20t-5t2, 。

6、二次函数与一元二次方程,yx22x3,函数yx22x3的图象与x轴两个交点为(1,0) (3,0),方程x22x3 0的两根是x1 1 , x2 3,你发现了什么? (1)二次函数yax2bxc与x轴的交点的横坐标就是当y0时 一元二次方程ax2bxc0的根; (2)二次函数与x轴的交点问题可以转化为一元二次方程去解决.,探究一:图象与x轴的交点的坐标是什么?,例1. 求二次函数yx24x5的图象与x轴的交点坐标.解:令y0则x24x5 0解之得,x1 5 ,x2 1 二次函数yx24x5的图象与x轴的交点坐标为:(5,0)(1,0),结论一: 若一元二次方程ax2+bx+c=0的两个根是x1、x2, 则抛物线y=ax2+bx+。

7、1.4 二次函数与一元二次方程的联系知识要点分类练 夯实基础知识点 1 二次函数与一元二次方程的关系1小兰画了一个函数 yx 2axb 的图象,如图 141,则关于 x 的方程x2axb0 的解是( )图 141A无解 Bx1 Cx4 Dx 11,x 242二次函数 yx 22x1 的图象与 x 轴的交点情况是( )A有两个相同的交点 B有两个不同的交点C没有交点 D无法确定3二次函数 yx 2x6 的图象与 x 轴交点的横坐标是( )A2 和3 B2 和 3C2 和 3 D2 和342018自贡若函数 yx 2 2xm 的图象与 x 轴有且只有一个交点,则 m 的值为_5抛物线 y3x 2x10 与 x 轴有无交点?若无,请说明理由;若有,。

8、第 2 课时 二次函数与一元二次方程及一元二次不等式的关系知识点 1 二次函数与一元二次方程1二次函数 y31x 2999x 892 的图象如图 2638 所示,则方程31x2999x89 20 的根的情况是 .图 26382若关于 x 的函数 ykx 2 2x1 的图象与 x 轴仅有一个公共点,则实数 k 的值为_3二次函数 yax 2bxc 的部分图象如图 2639 所示,若关于 x 的一元二次方程 ax2bxc0 的一个根为 x13,则另一个根 x2 为( )图 2639A1 B2 C3 D44已知抛物线 y(k3)x 22x1(k 为常数) 与 x 轴有交点,则 k 的取值范围是( )Ak4 Bk4Ck4 且 k3 Dk4 且 k35已知二次函数 yx 23xm(m 为常数。

9、30.5 二次函数与一元二次方程的关系,导入新课,讲授新课,当堂练习,课堂小结,第三十章 二次函数,学习目标,1.通过探索,理解二次函数与一元二次方程之间的联系.(难点) 2.能运用二次函数及其图像、性质确定方程的解. (重点) 3.了解用图像法求一元二次方程的近似根.,(1)一次函数yx2的图象与x轴的交点为( , ), 一元一次方程x20的根为_. (2)一次函数y3x6的图象与x轴的交点为( , ), 一元一次方程3x60的根为_. 问题一次函数ykxb的图象与x轴的交点与一元一次 方程kxb0的根有什么关系? 一次函数ykxb的图象与x轴的交点的横坐标就是一 元一次。

标签 > 冀教版九年级数学下册30.5二次函数与一元二次方程的关系课件[编号:131697]