7.3 球的表面积和体积 课时作业含答案

第 3课时 立体图形的表面积和体积一、填空。绿色圃中小学教育网.com1.长方体有( )个面,每个面是( ) ;有( )条棱,( )个顶点。2.把圆柱的侧面展开得到一个( ) ,它的长等于圆柱底面的( ) 。3.一个圆环铁片的外直径是 12cm,内直径是 8cm,环形铁片的面积是( )cm 2。4.

7.3 球的表面积和体积 课时作业含答案Tag内容描述:

1、第 3课时 立体图形的表面积和体积一、填空。绿色圃中小学教育网.com1.长方体有( )个面,每个面是( ) ;有( )条棱,( )个顶点。2.把圆柱的侧面展开得到一个( ) ,它的长等于圆柱底面的( ) 。3.一个圆环铁片的外直径是 12cm,内直径是 8cm,环形铁片的面积是( )cm 2。4.正方体的棱长扩大到原来的 3倍,表面积扩大到原来的( )倍,体积扩大到原来的( )倍。5.一个铁皮水桶,求做这个铁皮水桶用多少铁皮,是求它的( ) ;求这个水桶占空间大小,是求它的( ) ;求这个水桶可装多少升水,是求它的( ) 。二、选择题。1.三角。

2、1.3 空间几何体的表面积与体积1.3.1 柱体、锥体、台体的表面积与体积【课时目标】 1了解柱体、锥体、台体的表面积与体积的计算公式2会利用柱体、锥体、台体的表面积与体积公式解决一些简单的实际问题1旋转体的表面积名称 图形 公式圆柱底面积:S 底 _侧面积:S 侧 _表面积:S 2r(rl)圆锥底面积:S 底 _侧面积:S 侧 _表面积:S_圆台上底面面积:S 上底 _下底面面积:S 下底 _侧面积:S 侧_表面积:S_2体积公式(1)柱体:柱体的底面面积为 S,高为 h,则 V_(2)锥体:锥体的底面面积为 S,高为 h,则 V_(3)台体:台体的上、下底面面积分别为 。

3、第2课时柱、锥、台和球的体积基础过关1正方体的表面积为96,则正方体的体积为()A48 B64 C16 D96答案B解析设正方体的棱长为a,则6a296,a4,故Va34364.2若将气球的半径扩大到原来的2倍,则它的体积增大到原来的()A2倍 B4倍 C8倍 D16倍答案C解析设气球原来的半径为r,体积为V,则Vr3,当气球的半径扩大到原来的2倍后,其体积变为原来的238倍3如图是某几何体的三视图,则该几何体的体积为()A.12 B.18C942 D3618答案B解析由三视图可得几何体为长方体与球的组合体,故体积为V32218.4某几何体的三视图如图所示,则该几何体的体积为()A. B. C200 。

4、8.3.28.3.2 圆柱圆锥圆台球的表面积和体积圆柱圆锥圆台球的表面积和体积 第一课时第一课时 圆柱圆锥圆台的表面积和体积圆柱圆锥圆台的表面积和体积 基础达标 一选择题 1.一个圆台的母线长等于上下底面半径和的一半,且侧面积是 32,则母。

5、8.38.3 简单几何体的表面积与体积简单几何体的表面积与体积 8 8. .3.13.1 棱柱棱柱棱锥棱锥棱台的表面积和体积棱台的表面积和体积 1正方体的表面积为 96,则正方体的体积为 A48 6 B64 C16 D96 答案 B 2已知。

6、8 8. .3 3 简单几何体的表面积与体积简单几何体的表面积与体积 8 8. .3.13.1 棱柱棱锥棱台的表面积和体积棱柱棱锥棱台的表面积和体积 基础达标 一选择题 1.正三棱锥的所有棱长均为 a,则该三棱锥的表面积为 A.3 3a2 。

7、1.1.6棱柱、棱锥、棱台和球的表面积基础过关1.已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A.12 B.12C.8 D.10答案B解析因为过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,所以圆柱的高为2,底面圆的直径为2,所以该圆柱的表面积为2()22212.故选B.2.长方体的体对角线长度是5,若长方体的8个顶点都在同一个球面上,则这个球的表面积是()A.20B.25C.50D.200答案C解析对角线长为5,2R5,S4R24250.3.一个几何体的三视图如图所示(单位长度:cm),则此几何体的。

8、8.3.2 圆柱圆锥圆台球的表面积和体积圆柱圆锥圆台球的表面积和体积 A 级基础过关练 1长方体的长,宽,高分别为 a,2a,2a 它的顶点都在球面上,则这个球的体积是 A27a38 B27a32 C9a32 D9a38 2已知球的表面积为。

9、8 8. .3.23.2 圆柱圆柱圆锥圆锥圆台圆台球的表面积和体积球的表面积和体积 1两个球的体积之比为 827,那么这两个球的表面积之比为 A23 B49 C. 2 3 D. 8 27 答案 B 解析 由两球的体积之比为 827, 可得半。

10、61.3面积和体积公式第1课时棱柱、棱锥、棱台和球的表面积学习目标 1理解正棱柱、正棱锥、正棱台的侧面积及表面积的定义2.了解球、圆柱、圆锥、圆台的表面积的计算公式知识链接1棱柱的侧面形状是平行四边形;棱锥的侧面是三角形;棱台的侧面形状是梯形2圆柱、圆锥、圆台的底面形状是圆3三角形的面积Sah(其中a为底,h为高),圆的面积Sr2(其中r为半径);扇形的面积公式Slr(l为扇形的弧长,r为扇形的半径)预习导引柱体、锥体、台体、球的表面积几何体表面积公式圆柱S2r(rl)(其中r为底面半径,l为母线长)圆锥Sr(rl)(其中r为底面半径,l为母线长。

11、1.3.2 球的体积和表面积【课时目标】 1了解球的体积和表面积公式2会用球的体积和表面积公式解决实际问题3培养学生的空间想象能力和思维能力1球的表面积设球的半径为 R,则球的表面积 S_,即球的表面积等于它的大圆面积的_倍2球的体积设球的半径为 R,则球的体积 V_一、选择题1一个正方体与一个球表面积相等,那么它们的体积比是( )A B66 2C D22 32把球的表面积扩大到原来的 2 倍,那么体积扩大到原来的( )A2 倍 B2 倍2C 倍 D 倍2 323正方体的内切球和外接球的体积之比为( )A1 B133C13 D1934若三个球的表面积之比为 123,则它们的体积之比。

12、1.1.6棱柱、棱锥、棱台和球的表面积一、选择题1底面为正方形的直棱柱,它的底面对角线长为,体对角线长为,则这个棱柱的侧面积是()A2 B4 C6 D8答案D2圆柱的一个底面积是S,侧面展开图是一个正方形,那么这个圆柱的侧面积是()A4S B2S CS D.S答案A解析底面半径是,所以正方形的边长是22,故圆柱的侧面积是(2)24S.3正三棱锥的底面边长为a,高为a,则此棱锥的侧面积等于()A.a2 B.a2C.a2 D.a2答案A解析侧棱长为a,斜高为,S侧3aa2.4两个球的表面积之差为48,它们的大圆周长之和为12,则这两球的半径之差为()A4 B3 C2 D1答案C解析设两球半径分别。

13、第二课时第二课时 球的表面积和体积球的表面积和体积 基础达标 一选择题 1.两个球的半径之比为 13,那么两个球的表面积之比为 A.19 B.127 C.13 D.11 解析 由表面积公式知,两球的表面积之比为 R21R2219. 答案 A。

14、61.3面积和体积公式第1课时棱柱、棱锥、棱台和球的表面积基础过关1已知正六棱柱的高为h,底面边长为a,则它的表面积为()A3a26ah B.a26hC4a26ah D.a26ah答案A解析柱体的表面积是侧面积加上底面积,据正六棱柱的性质,得其表面积为S侧2S底3a26ah.2长方体的体对角线长度是5,若长方体的8个顶点都在同一个球面上,则这个球的表面积是()A20 B25C50 D200答案C解析设球的半径为R.对角线长为5,2R5,S4R24()250.3一个几何体的三视图如图所示(单位长度:cm),则此几何体的表面积是()A16 cm2 B(104) cm2C(124) cm2 D(82) cm2答案C解析此几何体为三棱。

15、7.2棱柱、棱锥、棱台和圆柱、圆锥、圆台的体积7.3球的表面积和体积基础过关1.某三棱锥的三视图如图所示,则该三棱锥的体积是()A. B. C. D.1解析如图,三棱锥的底面是一个直角边长为1的等腰直角三角形,有一条侧棱和底面垂直,且其长度为2,故三棱锥的高为2,故其体积V112,故选B.答案B2.已知长方体的过一个顶点的三条棱长的比是123,对角线的长是2,则这个长方体的体积是()A.6 B.12 C.24 D.48解析设长方体的过一个顶点的三条棱长分别为x、2x、3x(x0),又对角线长为2,则x2(2x)2(3x)2(2)2,解得x2,三条棱长分别为2、4、6,V长方体24648.答。

16、7.3球的表面积和体积一、选择题1.三个球的半径之比为123,那么最大的球的体积是其他两个球的体积之和的()A.1倍 B.2倍 C.3倍 D.4倍答案C解析设三个球的半径由小到大依次为r1,r2,r3,则r1r2r3123,V3r27r36r,V1V2rr9r12r,V33(V1V2).2.设正方体的表面积为24 cm2,一个球内切于该正方体,那么这个球的体积是()A. cm3 B. cm3C. cm3 D. cm3考点球的体积题点与外接、内切有关的球的体积计算问题答案D解析由正方体的表面积为24 cm2,得正方体的棱长为2 cm,故这个球的直径为2 cm,故这个球的体积为 cm3.3.圆柱形容器内盛有高度为6 cm的水,若。

【7.3 球的表面积和体积 课时】相关DOC文档
标签 > 7.3 球的表面积和体积 课时作业含答案[编号:168256]