专题08 分式方程及其应用 专题知识回顾 1分式方程的定义:分母中含有未知数的方程叫做分式方程. 2解分式方程的一般方法:解分式方程的思想是将“分式方程”转化为“整式方程”。 (1)去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程); (2)按解整式方程的步骤求出未知数的值; (3)验根
2020年中考数学必考专题21 菱形解析版Tag内容描述:
1、专题08 分式方程及其应用专题知识回顾 1分式方程的定义:分母中含有未知数的方程叫做分式方程. 2解分式方程的一般方法:解分式方程的思想是将“分式方程”转化为“整式方程”。(1)去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);(2)按解整式方程的步骤求出未知数的值;(3)验根:将所得的根代入最简公分母,若等于零,就是增根,原分式方程无解;若不等于零,就是原方程的根。专题典型题考法及解析 【例题1】(2019湖北孝感)方程的解为 【答案】x1【解析】解一个分式方程时,可按照“一去(去分母)、二解(解整式方程)。
2、菱形存在性问题巩固练习菱形存在性问题巩固练习(提优提优) 1 如图,平面直角坐标系 xOy 中,点 O 为坐标原点,四边形 OABC 为矩形,A(10,0),C(0,4),点 D 是 OA 的中点,点 P 在边 BC 上以每秒 1 个单位长的速度由点 C 向点 B 运动 (1)当四边形 PODB 是平行四边形时,求 t 的值; (2)在线段 PB 上是否存在一点 Q,使得四边形 ODQP 为菱形?。
3、菱形存在性问题巩固练习菱形存在性问题巩固练习(基础基础) 1 如图,矩形 ABCD 中,ABa,BC6,E、F 分别是 AB、CD 的中点 (1)求证:四边形 AECF 是平行四边形; (2)是否存在 a 的值使得四边形 AECF 为菱形,若存在求出 a 的值,若不存在说明理由; 【解答】(1)见解析;(2)不存在 【解析】(1)证明:四边形 ABCD 是矩形, ABCD,ADBC, 又E、F 。
4、专题14 函数的综合问题专题知识回顾 1.一次函数与二次函数的综合。2.一次函数与反比例函数的综合。3.二次函数与反比例函数的综合。4.一次函数、二次函数和反比例函数的综合。专题典型题考法及解析 【例题1】(2019黑龙江绥化)一次函数y1x+6与反比例函数y2(x0)的图象如图所示.当y1y2时,自变量x的取值范围是_.第18题图【答案】2y2时,自变量x的取值范围是2x4.【例题2】(2019吉林长春)如图,在平面直角坐标系中,抛物线y=ax2-2ax+(a0)与y轴交于点A,过点A作x轴的平行线交抛物线于点M,P为抛物线的顶点,若直线OP交直线AM于点B,且M为线段AB的。
5、专题13 反比例函数专题知识回顾 1反比例函数:形如y(k为常数,k0)的函数称为反比例函数。其他形式xy=k、 。 2图像:反比例函数的图像属于双曲线。反比例函数的图象既是轴对称图形又是中心对称图形。有两条对称轴:直线y=x和 y=-x。对称中心是:原点。它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。3性质:(1)当k0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小; (2)当k0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。 4.|k|的几何。
6、专题12 二次函数专题知识回顾 1二次函数的概念:一般地,自变量x和因变量y之间存在如下关系: y=ax2+bx+c(a0,a、b、c为常数),则称y为x的二次函数。抛物线叫做二次函数的一般式。2.二次函数y=ax2 +bx+c(a0)的图像与性质yxO(1)对称轴:(2)顶点坐标:(3)与y轴交点坐标(0,c)(4)增减性:当a0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a0时,抛物线的开口向上;当a0时,抛物线的开。
7、专题29 概率专题知识回顾 1确定事件(1)必然发生的事件:在一定的条件下重复进行试验时,在每次试验中必然会发生的事件。(2)不可能发生的事件:有的事件在每次试验中都不会发生,这样的事件叫做不可能的事件。2随机事件:在一定条件下,可能发生也可能不放声的事件,称为随机事件。(1)有些事情我们能确定他一定会发生,这些事情称为必然事件;(2)有些事情我们能肯定他一定不会发生,这些事情称为不可能事件;必然事件和不可能事件都是确定的(3)有很多事情我们无法肯定他会不会发生,这些事情称为不确定事件2.概率的统计定义:一。
8、专题05 因式分解专题知识回顾 1.分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.2.分解因式的一般方法:(1)提公共因式法.(2)运用公式法.平方差公式: 完全平方公式:(3)十字相乘法。利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.对于二次三项式,若存在 ,则首项系数不为1的十字相乘法在二次三项式(0)中,如果二次项系数可以分解成两个因数之积,即,常数项可以分解成两个因数之积,即,把排列如下:按斜线交叉相乘,再相加,得到,若它正好等于二次三项式的一次项系数,。
9、专题03 分式的运算专题知识回顾 1.分式:形如AB,A、B是整式,B中含有未知数且B不等于0的整式叫做分式(fraction)。其中A叫做分式的分子,B叫做分式的分母。分式有意义的条件是分母不等于02.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分。 3.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分。分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。4.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般将一个分式化为最简分式. 5.分式的。
10、专题33 最值问题专题知识回顾 在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要为以下几种:1.二次函数的最值公式二次函数(a、b、c为常数且)其性质中有若当时,y有最小值。;若当时,y有最大值。2.一次函数的增减性一次函数的自变量x的取值范围是全体实数,图象是一条直线,因而没有最大(小)值;但当时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。3. 判别式法根据题意构造一个关于未知数x的一元二次方程;再根据x是实数,推得,进而求出y的取值范围,并由此得。
11、专题25 圆的问题专题知识回顾 一、与圆有关的概念与规律1圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。圆的半径或直径决定圆的大小,圆心决定圆的位置。 2.圆的性质:(1)圆具有旋转不变性;(2)圆具有轴对称性;(3)圆具有中心对称性。3.垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。4推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧5圆心角:顶点在圆心上的角叫做圆心角。圆心角的度数等于它所对弧的度数。6在同圆或等圆中,相等的圆心角所对的弧相等,所对。
12、专题32 尺规作图问题专题知识回顾 1.尺规作图的定义:只用不带刻度的直尺和圆规通过有限次操作,完成画图的一种作图方法尺规作图可以要求写作图步骤,也可以要求不一定要写作图步骤,但必须保留作图痕迹。2.尺规作图的五种基本情况:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作已知线段的垂直平分线;(4)作已知角的角平分线;(5)过一点作已知直线的垂线。3.对尺规作图题解法:写出已知,求作,作法(不要求写出证明过程)并能给出合情推理。4.中考要求:(1)能完成以下基本作图:作一条线段等于已知线段,作一个。
13、专题30 规律型问题专题知识回顾 1.数字猜想型:数字规律问题主要是在分析比较的基础上发现题目中所蕴涵的数量关系,先猜想,然后通过适当的计算回答问题2.数式规律型:数式规律问题主要是通过观察、分析、归纳、验证,然后得出一般性的结论,以列代数式即函数关系式为主要内容3.图形规律型:图形规律问题主要是观察图形的组成、分拆等过程中的特点,分析其联系和区别,用相应的算式描述其中的规律,要注意对应思想和数形结合4.数形结合猜想型:数形结合猜想型问题首先要观察图形,从中发现图形的变化方式,再将图形的变化以数或式的形式反。
14、专题22 正方形专题知识回顾 1正方形定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。2正方形的性质:(1)具有平行四边形、矩形、菱形的一切性质;(2)正方形的四个角都是直角,四条边都相等;(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角;(4)正方形是轴对称图形,有4条对称轴;(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形;(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。3正方形的判定判定。
15、专题02 整式的运算专题知识回顾 1同底数幂的乘法法则:(都是正整数)同底数幂相乘,底数不变,指数相加。2幂的乘方法则:(都是正整数)幂的乘方,底数不变,指数相乘。幂的乘方法则可以逆用:即 3积的乘方法则:(是正整数)。积的乘方,等于各因数乘方的积。4同底数幂的除法法则:(都是正整数,且同底数幂相除,底数不变,指数相减。5零指数:任何不等于零的数的零次方等于1。即(a0)6负整数指数:任何不等于0的数的-p次幂(p是正整数),等于这个数的p次幂的倒数,即( a0,p是正整数)。7单项式与单项式相乘,把他们的系数,相同字母分别。
16、专题34 动态问题专题知识回顾 一、动态问题概述1.就运动类型而言,有函数中的动点问题、图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。2.就运动对象而言,几何图形中的动点问题,有点动、线动、面动三大类。3.就图形变化而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等。4.动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。所以说,动态问题是中考。
17、专题29 概率专题知识回顾 1确定事件(1)必然发生的事件:在一定的条件下重复进行试验时,在每次试验中必然会发生的事件。(2)不可能发生的事件:有的事件在每次试验中都不会发生,这样的事件叫做不可能的事件。2随机事件:在一定条件下,可能发生也可能不放声的事件,称为随机事件。(1)有些事情我们能确定他一定会发生,这些事情称为必然事件;(2)有些事情我们能肯定他一定不会发生,这些事情称为不可能事件;必然事件和不可能事件都是确定的(3)有很多事情我们无法肯定他会不会发生,这些事情称为不确定事件2.概率的统计定义:一。
18、专题20 矩形专题知识回顾 1矩形的定义:有一个角是直角的平行四边形叫做矩形。2矩形的性质:(1)矩形的四个角都是直角; (2)矩形的对角线平分且相等。3矩形判定定理:(1)有一个角是直角的平行四边形是矩形;(2)对角线相等的平行四边形是矩形; (3)有三个角是直角的四边形是矩形。4矩形的面积:S矩形=长宽=ab专题典型题考法及解析 【例题1】(2019广西桂林)将矩形按如图所示的方式折叠,为折痕,若顶点,都落在点处,且点,在同一条直线上,同时点,在另一条直线上,则的值为ABCD【答案】B【解析】由折叠可得,分别为,的中点,。
19、专题21 菱形专题知识回顾 1 菱形的定义 :有一组邻边相等的平行四边形叫做菱形。2.菱形的性质:(1) 菱形的四条边都相等;(2)菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。 3.菱形的判定定理:(1)一组邻边相等的平行四边形是菱形;(2)对角线互相垂直的平行四边形是菱形; (3)四条边相等的四边形是菱形。4菱形的面积:S菱形=底边长高=两条对角线乘积的一半专题典型题考法及解析 【例题1】(2019内蒙古赤峰)如图,菱形ABCD周长为20,对角线AC、BD相交于点O,E是CD的中点,则OE的长是()A2.5B3C4D5【例题2】(2019广。
20、专题21 菱形专题知识回顾 1菱形的定义 :有一组邻边相等的平行四边形叫做菱形。2.菱形的性质:(1)菱形的四条边都相等;(2)菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。 3.菱形的判定定理:(1)一组邻边相等的平行四边形是菱形; (2)对角线互相垂直的平行四边形是菱形; (3)四条边相等的四边形是菱形。4菱形的面积:S菱形=底边长高=两条对角线乘积的一半专题典型题考法及解析 【例题1】(2019内蒙古赤峰)如图,菱形ABCD周长为20,对角线AC、BD相交于点O,E是CD的中点,则OE的长是()A2.5B3C4D5【答案】A【解析】。