2020广西中考数学一轮复习课件第9讲 分式方程

第29讲 图形的对称,一、轴对称图形 1. 定义:如果一个图形沿着一条_对折,直线两旁的部分能_,这个图形就叫做轴对称图形,这条_叫做对称轴 2. 性质: (1)轴对称图形对应点所连的线段被对称轴_ (2)轴对称图形的对应线段_,对应角也_.,直线,互相重合,直线,垂直平分,相等,相等,二、轴对称

2020广西中考数学一轮复习课件第9讲 分式方程Tag内容描述:

1、第29讲 图形的对称,一、轴对称图形 1. 定义:如果一个图形沿着一条_对折,直线两旁的部分能_,这个图形就叫做轴对称图形,这条_叫做对称轴 2. 性质: (1)轴对称图形对应点所连的线段被对称轴_ (2)轴对称图形的对应线段_,对应角也_.,直线,互相重合,直线,垂直平分,相等,相等,二、轴对称 1. 把一个图形沿着一条直线翻折过去,如果它能够与_,那么就说这两个图形成轴对称,这条直线叫做_ 2. 性质 (1)关于某条直线对称的两个图形是_形 (2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的_ (3)当两个图形关于某条直线对称时,如果它们。

2、第26讲 尺规作图,第26讲 尺规作图,一、尺规作图 尺规作图的基本工具是_和_.作图时不能利用直尺的刻度、三角板现有的角度和量角器 二、五种基本作图 1作一条线段等于已知线段 2作一个角等于已知角 3作已知线段的垂直平分线 4作已知角的平分线 5作已知直线的垂线,包括以下两种情形: (1)过直线上一点作一条直线与已知直线垂直; (2)过直线外一点作一条直线与已知直线垂直.,没有刻度的直尺,圆规,作已知角的平分线;作已知直线的垂线,如图,在ABC中,ABBC,点D在AB的延长线上 (1)利用尺规按下列要求作图,并在图中标明相应的字母(保留作图痕。

3、1,第3讲 代数式,一、代数式的定义 用数字、_及_组成的式子叫做代数式特别地,单独的一个数或一个_也是代数式 二、代数式的值 用_代替代数式里的字母,计算后得出的结果叫做代数式的值,字母,基本运算符号,字母,数字,三、列代数式 在解决实际问题时,常常需要把问题中的各种数量关系用含有数字、_和_组成的式子表示出来,这个过程叫做列代数式,字母,运算符号,(2018桂林)用代数式表示:a的2倍与3的和下列表示正确的是( ) A2a3 B2a3 C2(a3) D2(a3),列代数式,【思路点拨】a的2倍就是2a,再求2a与3的和书写代数式要注意:代数式中出现的乘号,通。

4、第33讲 图形与坐标,一、确定位置的方法 1. 有序实数对法:用一对_实数对确定物体的位置 2. 方向、距离法:用_和_确定物体的位置(或称方位) 二、平面直角坐标系概念 在平面内,两条互相_且有公共_的数轴组成平面直角坐标系,水平的数轴叫做_或_;竖直的数轴叫做_或_,两数轴的交点O称为_,有序,方向,距离,垂直,交点,横轴,x轴,纵轴,y轴,原点,三、点的坐标 在平面内一点P,过P向x轴、y轴分别作垂线,垂足在x轴、y轴上对应的数a,b分别叫做P点的_坐标和_坐标,则有序实数对(_,_)叫做P点的坐标点P(a,b)到x轴的距离为_,到y轴的距离为_,横,纵,a。

5、第1讲 有理数,1,一、有关概念 1. 有理数的分类 (1)按有理数的意义分类,有理数,一、有关概念 (2)按正、负来分,有理数,2. 数轴三要素:_、_和_;数轴上原点表示的数是_;原点右边表示的数是_,原点左边表示的数是_ 3. 相反数:只有_不相同的_叫做互为相反数;数a的相反数是_(特别地,0的相反数是_);a与b互为相反数_. 4. 倒数:数a(a0)的倒数是_(特别地,_没有倒数),a和b互为倒数_.,原点,正方向,单位长度,0,正数,负数,符号,两个数,-a,0,ab0,0,ab1,二、运算规律 1. 绝对值的几何意义:数轴上表示数a的点与原点的_叫做数a的绝对值,记作_正数。

6、第10讲 一元二次方程,一、一元二次方程的有关定义 1. 一元二次方程的概念:只含有_未知数,并且未知数的最高次数是_,这样的整式方程就是一元二次方程 2. 一般表达式:_,其中_是二次项,_叫二次项系数;_是一次项,_叫一次项系数,_是常数项二次项系数、一次项系数及常数项都是方程在一般形式下定义的,所以求一元二次方程的各项系数时,必须先将方程化为一般形式 3. 一元二次方程的解:使一元二次方程两边相等的_的值,就是一元二次方程的解,一个,2,ax2bxc0(a0),ax2,a,bx,b,c,未知数,二、一元二次方程的解法 1. 直接开平方法:适用于能。

7、第7讲 一元一次方程,一、方程的有关概念 1. 含有_的等式叫做方程 2. 方程的解:使方程等号左右两边_的未知数的值,叫做方程的解(或方程的根) 3. 解方程:求得_的过程,叫做解方程,未知数,相等,方程的解,二、等式的性质 1. 等式的性质1:等式两边同时加(或减)_, _结果仍相等即,如果ab,那么ac_. 2. 等式的性质2:等式两边同时乘以_,或同时除以一个_,结果仍相等 即,如果ab,那么ac_; 如果ab且c0,那么 _. 注意:等式的性质是方程变形、化简的依据与法则,同一个数(或,bc,一个数,不为0的数,bc,式子),三、一元一次方程 1. 概念:只含有_。

8、第6课时 分式方程及其应用 课标要求 1.能根据具体问题中的数量关系列出方程,体会方程是刻画现实世界数量关系的有效 模型. 2.能解可化为一元一次方程的分式方程. 3.能根据具体问题的实际意义,检验方程的解是否合理. 考点一 分式方程的相关概念 1.若 x=3 是分式方程-2 1 -2=0的根,则 a 的值是 ( ) A.5 B.-5 C.3 D.-3 答案A 解析 根据方程根的意义,。

9、第34讲 统 计,一、数据的处理 1. 数据收集与处理的一般过程 调查收集数据 整理数据 描述数据分析数据得出结论 2. 收集数据的方式:_调查和_调查 3. 总体、个体和样本 (1)总体:要考察的_对象叫做总体 (2)个体:组成总体的_考察对象叫做个体 (3)样本:从总体中取出的那些_组成总体的一个样本 (4)样本容量:样本中个体的_叫做样本容量,普查,抽样,全体,每一个,个体,数目,二、几种常见的统计图 1. 条形统计图:用长方形的高来表示数据的图形 特点:能够清楚地显示每个项目的_; 易于比较数据间的差别 2. 折线统计图:用几条线段连接的折线来表。

10、第35讲 概 率,2. 相关定义 (1)必然事件:在一定条件下,_会发生的事件. (2)不可能事件:在一定条件下,必然_发生的事件 (3)确定事件:_事件和_事件统称确定事件. (4)随机事件:在一定条件下,可能_也可能不发生的 事件,一定,不,必然,不可能,发生,二、概率 1. 定义:表示一个事件发生_的大小的数值叫做概率,通常用字母P表示 2. P(必然事件)_;P(不可能事件)_;P(随机事件)满足_,可能性,1,0,0P1,3. 概率的求法 (1)较简单问题情境下的概率:在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事 件A包含其中的m种结果,则P(A)_. 。

11、1,第4讲 整 式,一、整式的有关概念 1. 单项式:由_与_的积组成的代数式叫做单项式单项式中的_因数叫做这个单项式的系数,所有字母的_叫做这个单项式的次数特别地,单独一个_或一个_也是单项式 2. 多项式:几个_的和叫做多项式其中每个_叫做这个多项式的项,多项式中_的项叫做常数项,多项式中次数_的项的次数,叫做这个多项式的次数 3. 整式:_和_统称整式,数,字母,数字,指数的和,数,字母,单项式,单项式,不含字母,最高,单项式,多项式,二、整式的运算 1. 同类项 (1)同类项:所含_相同,并且相同字母的_也分别相同的项叫做同类项特别地,几。

12、1,第2讲 实 数,一、实数的分类 1. 无理数:_小数叫做无理数(如:0.125678234671, 等) 2. 实数:_和_统称为实数一个实数用数轴上的一个点来表示,反过来,数轴上的一个点表示一个实数,这就是说实数和数轴上的点成_关系有理数中关于相反数、绝对值、倒数的意义同样适用于_有理数的运算法则、运算顺序、运算律同样适用于_范围,无限不循环,有理数,无理数,一一对应,无理数,无理数,二、数的开方 1. 平方根:如果一个数的_等于a,那么这个数就叫做a的_(或二次方根)非负数a的平方根记作_,其中a叫做_一个正数有两个平方根,它们互为_;零的平方。

13、 第6讲 分 式【基础过关】1. 下列式子中是分式的是(C)A. B. C. D.2. 分式没有意义,则(A)Ax1 Bx1 Cx1 Dx13. 若分式的值为0,则x的值为(C)A2 B0 C2 D24. (2019扬州)分式可变形为(D)A. B C. D5. 把分式中a,b都扩大2倍,则分式的值(D)A扩大4倍 B扩大2倍C缩小为原来的 D不变6. (2019临沂)计算a1的正确结果是(B)A. B. C 。

14、第 7 讲 分式方程A组 基础题组一、选择题1.(2017德州)分式方程 -1= 的解是( )-1 3(-1)(+2)A.x=1 B.x=-1+ 5C.x=2 D.无解2.(2017枣庄)若关于 x的分式方程 -1= 无解,则 m的值为( )2+-3 2A.-1.5B.1C.-1.5或 2D.-0.5或-1.53.(2017新泰模拟)随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了 15分钟,现已知小林家距学校 8千米,乘私家车的平均速度是乘公交车的平均速度的 2.5倍,设公交车平均每小时行驶 x千米,根据题意可列方程为( )A. +15= B. = +158 82.5 8 82.5C. + = D. = +814 82.5 8 82.5144.甲。

15、第7讲分式方程(参考用时:50分钟)A层(基础)1.(2019成都)分式方程x-5x-1+2x=1的解为(A)(A)x=-1(B)x=1(C)x=2(D)x=-2解析:方程两边同时乘以x(x-1),得x(x-5)+2(x-1)=x(x-1),解得x=-1,检验:当x=-1时,x(x-1)0,x=-1是原方程的解.故选A.2.(2019十堰)十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6 000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x米,则根据题意所列的方程是(A)(A)6 000x-6 000x+20=15(B)6 000x+20-6 000x=15(C)6 000x-6 000x-15=20(D)6 000x-15-6 000x=。

16、第一部分第二章第4讲1(2019海南)分式方程1的解是(B)Ax1Bx1Cx2Dx22(2019聊城)如果分式的值为0,那么x的值为(B)A1B1C1或1D1或03(2018株洲)关于x的分式方程0的解为x4,则常数a的值为(D)A1B2C4D104(2019淄博)解分式方程2时,去分母变形正确的是(D)A1x12(x2)B1x12(x2)C1x12(2x)D1x12(x2)5(2019广州)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是(D)ABCD6(2018昆明)甲、乙两船从相距300 km的A,B两地同时出发相向而行,甲船从A地顺流航行180 km时。

17、第7讲 分式方程,总纲目录,泰安考情分析,基础知识过关,知识点一 分式方程及其解法,1.分式方程:分母中含有 未知数 的方程叫做分式方程.,2.解分式方程的基本思想:分式方程 整式 方程.,3.解分式方程的步骤 (1)去分母:方程的两边同乘各个分式的最简公分母,转化为整式 方程; (2)解整式方程; (3)验根:把根代入 最简公分母 中,使 最简公分母为零 的根是增根,应舍去.,4.增根:在方程变形时,有时可能产生不适合原方程的根,这种根叫做原方程的增根,在方程变形时,方程两边同乘值为0的整式就会产生增根.,知识点二 分式方程的应用,1.类似于列整式方程解应。

18、第二章 方程与不等式,第一部分 基础过关,第4讲 分式方程,3,考情通览,4,1分式方程 (1)分式方程的概念:分母中含有未知数的方程叫做分式方程 (2)分式方程的解:在方程的变形时,有时可能产生不适合原方程的根(使方程中的分母为零),因此解分式方程要验根,其方法是代入最简公分母中看分母是不是为零 (3)解分式方程的基本思想:把分式方程转化为整式方程,知识梳理,要点回顾,5,即时演练,B,k3且k1,6,2解分式方程 解分式方程的步骤: (1)方程的两边都乘最简公分母,约去分母,化成整式方程; (2)解这个整式方程; (3)把整式方程的根代入最简公分。

19、 第9讲 分式方程1. 下面是四位同学解方程1的过程中去分母的一步,其中正确的是(D)A2xx1 B2x1 C2x1x D2xx12. 分式方程1的解是(B)A2 B1 C1 D23. 对于非零的两个实数a,b,规定ab,若2(2x1)1,则x的值为(A)A. B. C. D4. 一艘轮船在静水中的最大航速为35 km/h,它以最大航速沿江顺流航行120 km所用时间,与以最大航速逆流航行90 km所用时间相等设江水的流速为v km/h,则可列方程为(D)A. B.C. D.5. 小玲每天骑自行车或步行上学,她上学的路程为2 800米,骑自行车的平均速度是步行平均速度的4倍,骑自行车比步行上学早到30分钟设步行的。

【2020广西中考数学一轮复习】相关PPT文档
【2020广西中考数学一轮复习】相关DOC文档
标签 > 2020广西中考数学一轮复习课件第9讲 分式方程[编号:117293]