中考中考压轴题全揭秘压轴题全揭秘 专题专题 1717 探究型问题探究型问题 一、单选题一、单选题 1如图,直线与 x 轴、y 轴分别交于 A、B 两点,点 P 是以 C(1,0)为圆心,1 为半径的圆 上一点,连接 PA,PB,则PAB 面积的最小值是( ) A5 B10 C15 D20 2定义一
2019中考数学压轴题全揭秘精品专题02Tag内容描述:
1、 中考中考压轴题全揭秘压轴题全揭秘 专题专题 1717 探究型问题探究型问题 一、单选题一、单选题 1如图,直线与 x 轴、y 轴分别交于 A、B 两点,点 P 是以 C(1,0)为圆心,1 为半径的圆 上一点,连接 PA,PB,则PAB 面积的最小值是( ) A5 B10 C15 D20 2定义一种对正整数 n 的“F”运算:当 n 为奇数时,F(n)=3n+1;当 n 为偶数时,F(n)=(其 中 k 是使 F(n)为奇数的正整数),两种运算交替重复进行,例如,取 n=24,则: 若 n=13,则第 2018 次“F”运算的结果是( ) A1 B4 C2018 D4 2018 3如图,在ABC 中,AB=20cm,AC=12cm,。
2、 1 一、单选题一、单选题 1如图,A 过点 O(0,0) ,C(,0) ,D(0,1) ,点 B 是 x 轴下方A 上的一点,连接 BO,BD,则OBD 的度数是( ) A15 B30 C45 D60 【答案】B 【关键点拨】 此题考查圆周角定理,关键是利用三角函数得出DCO=30 2如图,等腰 RtABC中,斜边 AB 的长为 2,O为 AB的中点,P 为 AC边上的动点,OQOP 交 BC于 点 Q,M 为 PQ的中点,当点 P 从点 A运动到点 C时,点 M所经过的路线长为( ) 2 A B C1 D2 【答案】C , RtAOPCOQ, AP=CQ, 易得APE和BFQ 都为等腰直角三角形, PE=AP=CQ,QF= BQ, PE+QF=(CQ+BQ)=BC= =1。
3、 1 中考中考压轴题全揭秘压轴题全揭秘 专题专题 0 06 6 反比例函数问题反比例函数问题 一、单选题一、单选题 1已知反比例函数的解析式为,则 的取值范围是 A B C D 2如图,直角三角形的直角顶点在坐标原点,OAB=30,若点 A 在反比例函数 y= (x0)的图象上, 则经过点 B 的反比例函数解析式为( ) Ay= By= Cy= Dy= 3如图,点 C 在反比例函数 y= (x0)的图象上,过点 C 的直线与 x 轴,y 轴分别交于点 A,B,且 AB=BC, AOB 的面积为 1,则 k 的值为( ) A1 B2 C3 D4 4如图,点 A在双曲线 y (x0)上,过点 A作 ABx轴,垂足为点 B,分别。
4、 中考中考压轴题全揭秘压轴题全揭秘 专题专题 0808 函数综合问题函数综合问题 一、单选题一、单选题 1二次函数的图象如图所示,下列结论:; ;,其中正确结论的是 A B C D 2 反比例函数 y(a0, a 为常数) 和 y 在第一象限内的图象如图所示, 点 M 在 y 的图象上, MCx 轴于点 C,交 y 的图象于点 A;MDy轴于点 D,交 y 的图象于点 B,当点 M 在 y 的图象上运动 时,以下结论:SODBSOCA;四边形 OAMB的面积不变;当点 A是 MC的中点时,则点 B是 MD 的中点其中正确结论是( ) A B C D 3抛物线 yax2+bx+1的顶点为 D,与 x 轴正半轴交于 A。
5、 一一、选择题选择题 1已知 xm=3 ,xn=5,则 xm+n 的值为( ) A8 B15 C53 D35 【答案】B 2无论 x 取任何实数,代数式都有意义,则 m 的取值范围是( ) A B C D 【答案】C 【解析】 由题意得 , , , 无论 x取任何实数,代数式都有意义, , . 故选 C.学科*网 【关键点拔】 本题考查了二次根式的定义,形如的式子叫二次根式,熟练掌握二次根式成立的条件是解答本题 的关键. 3中国倡导“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口约为 44 亿人,数据 44亿用科学记数法表示为( ) A44 108 B4.4 。
6、 中考中考压轴题全揭秘压轴题全揭秘 专题专题 18 综合问题综合问题 一、单选题一、单选题 1有一天,兔子和乌龟赛跑比赛开始后,兔子飞快地奔跑,乌龟缓慢的爬行不一会儿,乌龟就被远远 的甩在了后面兔子想:“这比赛也太轻松了,不如先睡一会儿”而乌龟一刻不停地继续爬行当兔子 醒来跑到终点时,发现乌龟已经到达了终点正确反映这则寓言故事的大致图象是( ) A B C D 2 如图, 在平面直角坐标系中, 直线 l1: y=x+1 与 x 轴, y 轴分别交于点 A 和点 B, 直线 l2: y=kx (k0) 与直线 l1在第一象限交于点 C若BOC=BCO,则 k 的值为( 。
7、 1 中考中考压轴题全揭秘压轴题全揭秘 专题专题 1313 动点型问题动点型问题 一、单选题一、单选题 1如图,A 过点 O(0,0) ,C(,0) ,D(0,1) ,点 B 是 x 轴下方A 上的一点,连接 BO,BD,则OBD 的度数是( )来源:Z。xx。k.Com A15 B30 C45 D60 2如图,等腰 RtABC中,斜边 AB 的长为 2,O为 AB的中点,P 为 AC边上的动点,OQOP 交 BC于 点 Q,M 为 PQ的中点,当点 P 从点 A运动到点 C时,点 M所经过的路线长为( ) A B C1 D2 3如图,平面直角坐标系中,P 经过三点 A(8,0) ,O(0,0) ,B(0,6) ,点 D 是P 上的一动点当 点。
8、 一、单选题一、单选题 1二次函数的图象如图所示,下列结论:; ;,其中正确结论的是 来源:Zxxk.Com A B C D 【答案】C , ,故错误, x1时,y 取得最大值 ab+c, ax2+bx+cab+c, x(ax+b)ab,故正确 故选:C学科*网 【关键点拨】 本题考查二次函数的图象与系数的关系等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题, 属于中考常考题型 2 反比例函数 y (a0, a 为常数) 和 y 在第一象限内的图象如图所示, 点 M 在 y 的图象上, MCx 轴于点 C,交 y 的图象于点 A;MDy轴于点 D,交 y 的图象于点 B,当点 M 在 y 的图象。
9、 中考中考压轴题全揭秘压轴题全揭秘 专题专题 1111 圆问题圆问题 一、单选题一、单选题 1 九章算术是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就它的算法体系至今 仍在推动着计算机的发展和应用书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长 一尺, 问径几何?”译为: “今有一圆柱形木材, 埋在墙壁中, 不知其大小, 用锯去锯这木材, 锯口深 1 寸 (ED=1 寸) ,锯道长 1 尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?” 如图所示,请根据所学知识计算:圆形木材的直径 AC 是( ) A13寸。
10、 中考中考压轴题全揭秘压轴题全揭秘 专题专题 1717 探究型问题探究型问题 一、单选题一、单选题 1如图,直线与 x 轴、y 轴分别交于 A、B 两点,点 P 是以 C(1,0)为圆心,1 为半径的圆 上一点,连接 PA,PB,则PAB 面积的最小值是( ) A5 B10 C15 D20 【答案】A 【解析】 作CHAB于H交O于E、F连接BC A(4,0) ,B(0,3) ,OA=4,OB=3,AB=5 SABC= ABCH=ACOB,ABCH=ACOB,5CH=(4+1)3,解得:CH=3,EH=31=2 当点P与E重合时,PAB的面积最小,最小值52=5 故选 A 【关键点拨】 本题考查了一次函数图象上的点的坐标特征、一次函数的性质、。
11、 一、单选题一、单选题 1如图,正ABC 的边长为 2,过点 B 的直线 lAB,且ABC 与ABC关于直线 l 对称,D 为线段 BC 上一动点,则 ADCD的最小值是( ) A4 B3 C2 D2 【答案】A 【解析】 连接 CC,连接 AC 交l于点 D,连接 AD,此时 AD+CD 的值最小,如图所示 【关键点拨】本题考查了轴对称中的最短线路问题以及等边三角形的性质,找出点 C 关于 BC /对称的点是 A /是解题的关键. 2某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方 体最少有( ) A4 个 B5个 C6个 D7 个 【答案】B 【关键点拨】。
12、 1 中考中考压轴题全揭秘压轴题全揭秘 专题专题 1717 探究型问题探究型问题 一、单选题一、单选题 1如图,直线与 x 轴、y 轴分别交于 A、B 两点,点 P 是以 C(1,0)为圆心,1 为半径的圆 上一点,连接 PA,PB,则PAB 面积的最小值是( ) A5 B10 C15 D20 【答案】A 【解析】 作CHAB于H交O于E、F连接BC A(4,0) ,B(0,3) ,OA=4,OB=3,AB=5 SABC= ABCH=ACOB,ABCH=ACOB,5CH=(4+1)3,解得:CH=3,EH=31=2 当点P与E重合时,PAB的面积最小,最小值52=5 故选 A 【关键点拨】 本题考查了一次函数图象上的点的坐标特征、一次函数的性质。
13、 中考中考压轴题全揭秘压轴题全揭秘 专题专题 1818 综合问题综合问题 一、单选题一、单选题 1有一天,兔子和乌龟赛跑比赛开始后,兔子飞快地奔跑,乌龟缓慢的爬行不一会儿,乌龟就被远远 的甩在了后面兔子想:“这比赛也太轻松了,不如先睡一会儿”而乌龟一刻不停地继续爬行当兔子 醒来跑到终点时,发现乌龟已经到达了终点正确反映这则寓言故事的大致图象是( ) A B C D 【答案】D 【解析】 乌龟运动的图象是一条直线,兔子运动的图象路程先增大,而后不变,再增大,并且乌龟所用时间最短 故选 D 【关键点拨】 本题考查了函数图象问题,。
14、 一、单选题一、单选题 1 九章算术是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就它的算法体系至今 仍在推动着计算机的发展和应用书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长 一尺, 问径几何?”译为: “今有一圆柱形木材, 埋在墙壁中, 不知其大小, 用锯去锯这木材, 锯口深 1 寸 (ED=1 寸) ,锯道长 1 尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?” 如图所示,请根据所学知识计算:圆形木材的直径 AC 是( ) A13寸 B20 寸 C26寸 D28寸 【答案】C 【关键点拨】本题考查垂径定理、。
15、 1 中考中考压轴题全揭秘压轴题全揭秘 专题专题 0808 函数综合问题函数综合问题 一、单选题一、单选题 1二次函数的图象如图所示,下列结论:; ;,其中正确结论的是 A B C D 2 反比例函数 y (a0, a 为常数) 和 y 在第一象限内的图象如图所示, 点 M 在 y 的图象上, MCx 轴于点 C,交 y 的图象于点 A;MDy轴于点 D,交 y 的图象于点 B,当点 M在 y 的图象上运动 时,以下结论:SODBSOCA;四边形 OAMB的面积不变;当点 A是 MC的中点时,则点 B是 MD 的中点其中正确结论是( ) A B C D 3抛物线 yax2+bx+1的顶点为 D,与 x 轴正半轴交于。
16、 决胜决胜 2019 中考化学压轴题全揭秘之中考题中考化学压轴题全揭秘之中考题 专题专题 02 基本概念和原理的推理基本概念和原理的推理 1 【2018 年山东省青岛市】下列物质属于纯净物的是 A石油 B海水 C水银 D空气 【答案】C 【解析】只由一种物质组成的是纯净物,由两种或两种以上物质组成的是混合物。水银是由一种物质组成 的,属于纯净物;石油、海水、空气都是由多种物质组成的,属于混合物。故选 C。 2 【2018 年四川省乐山市】类推是学习化学的重要方法之一,但盲目类推又可能得出错误结论。下列类推 正确的是 A原子和分子均是微观粒。
17、 1 中考中考压轴题全揭秘压轴题全揭秘 专题专题 18 综合问题综合问题 一、单选题一、单选题 1有一天,兔子和乌龟赛跑比赛开始后,兔子飞快地奔跑,乌龟缓慢的爬行不一会儿,乌龟就被远远 的甩在了后面兔子想:“这比赛也太轻松了,不如先睡一会儿”而乌龟一刻不停地继续爬行当兔子 醒来跑到终点时,发现乌龟已经到达了终点正确反映这则寓言故事的大致图象是( ) A B C D 2 如图, 在平面直角坐标系中, 直线 l1: y=x+1 与 x 轴, y 轴分别交于点 A 和点 B, 直线 l2: y=kx (k0) 与直线 l1在第一象限交于点 C若BOC=BCO,则 k 的值为(。
18、 决胜决胜 2019 中考化学压轴题全揭秘之预测题中考化学压轴题全揭秘之预测题 专题专题 02 基本概念和原理的推理基本概念和原理的推理 一、单选题 1铬酸铅可用作黄色涂料,常用以下方法制取:K2CrO4+Pb(NO3)2PbCrO4+2KNO3,该反应属于 ( ) A化合反应 B分解反应 C置换反应 D复分解反应 【答案】D 【解析】A、化合反应是有两种或两种以上的物质生成一种物质的化学反应,故选项错误;B、分解反应是 由一种物质生成两种或两种以上的物质的反应,故选项错误;C、置换反应是一种单质和一种化合物反 应生成另一种单质和另一种化合物的化学反应。
19、 中考中考压轴题全揭秘压轴题全揭秘 专题专题 0 02 2 方程(组)问题方程(组)问题 一、单选题一、单选题来源来源:Zxxk.Com 120172018 赛季中国男子篮球职业联赛,采用双循环制(每两队之间都进行两场比赛) ,比赛总场数为 380 场,若设参赛队伍有 x 支,则可列方程为( ) A B C D 2若 2-是方程 x2-4x+c=0 的一个根,则 c 的值是( ) A1 B3- C1+ D2+ 3已知 x1,x2是关于 x 的方程 x2+bx3=0 的两根,且满足 x1+x23x1x2=5,那么 b 的值为( ) A4 B4 C3 D3 4若关于 x 的分式方程有增根,则 m 的值为( ) A1或2 B1或 2 C1 或 2 D0 或2 5。
20、 一、单选题一、单选题 120172018 赛季中国男子篮球职业联赛,采用双循环制(每两队之间都进行两场比赛) ,比赛总场数为 380 场,若设参赛队伍有 x 支,则可列方程为( ) A B C D 【答案】B 【关键点拨】 本题考查了由实际问题抽象出一元二次方程,关键是根据总比赛场数做为等量关系列方程求解 2若 2-是方程 x2-4x+c=0 的一个根,则 c 的值是( ) A1 B3- C1+ D2+ 【答案】A 【解析】 把 2代入方程 x24x+c=0,得(2)24(2)+c=0,解得:c=1 故选 A学科*网 【关键点拨】 本题考查的是一元二次方程的根即方程的解的定义能使一元二次方程。