2019苏教版高中数学必修四第3章

第第 3 章章 统计案例统计案例 章末复习章末复习 学习目标 1.理解独立性检验的基本思想及实施步骤.2.会求线性回归方程,并用回归直线进 行预测 122 列联表 22 列联表如表所示: B B 合计 A a b ab A c d cd 合计 ac bd n 其中 nabcd 为样本容量 2最小二乘

2019苏教版高中数学必修四第3章Tag内容描述:

1、第第 3 章章 统计案例统计案例 章末复习章末复习 学习目标 1.理解独立性检验的基本思想及实施步骤.2.会求线性回归方程,并用回归直线进 行预测 122 列联表 22 列联表如表所示: B B 合计 A a b ab A c d cd 合计 ac bd n 其中 nabcd 为样本容量 2最小二乘法 对于一组数据(xi,yi),i1,2,n,如果它们线性相关,则线性回归方程为y b xa 。

2、模块综合试卷(时间:120分钟满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1若角是第二象限角,且cos ,则角是第_象限角答案三解析由角是第二象限角,可得是第一、三象限角又cos ,所以角是第三象限角2若,则sin cos 的值为_答案解析由题意得(sin cos ),所以sin cos .3已知向量a(cos 75,sin 75),b(cos 15,sin 15),则|ab|的值为_答案1解析如图,将向量a,b的起点都移到原点,即a,b,则|ab|且xOA75,xOB15,于是AOB60,又因为|a|b|1,则AOB为正三角形,从而|ab|1.4设向量a(3cos x,1),b(5sin x1,cos x),且ab,则cos 2x。

3、模块综合试卷(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1sin 300等于 ()A B C. D.答案A解析sin 300sin(60360)sin(60)sin 60,故选A.2已知为锐角,sin ,则sin 2等于()A. B. C D答案B解析sin ,为锐角,cos ,sin 22sin cos 2.3已知向量a(cos 75,sin 75),b(cos 15,sin 15),则|ab|的值为()A. B1 C2 D3答案B解析如图,将向量a,b的起点都移到原点,即a,b,则|ab|且xOA75,xOB15,于是AOB60。

4、第2章检测试卷(B)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人为了解职工收入情况,决定采用分层抽样的方法从中抽取样本若样本中具有初级职称的职工为10人,则样本容量为()A10 B20 C40 D50答案C解析设样本容量为n,则,解得n40.2总体已经分成A,B,C三层,A,B,C三层个体数之比为235,现从总体中抽取容量为20的一个样本,已知A层中用简单随机抽样抽取样本时,甲被抽到的概率为,则总体的个体个数。

5、章末检测卷(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集U1,2,3,4,5,A1,3,则UA()A. B.1,3C.2,4,5 D.1,2,3,4,5解析因为U1,2,3,4,5,A1,3,所以UA2,4,5.故选C.答案C2.已知集合Ax|x10,B0,1,2,则AB()A.0 B.1 C.1,2 D.0,1,2解析由题意知,Ax|x1,则AB1,2.答案C3.设集合Mx|3x2,Nx|1x3,则MN等于()A.1,2) B.(3,3C.(3,1 D.(2,3解析Mx|3x2且Nx|1x3,MNx|1x2.答案A4.已知集合P1,2,1,2,则满足1,2。

6、章末检测(二)(满分160分,时间120分钟)一、填空题(本大题共14小题,每小题5分,共70分.)1.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名,现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为_.解析分层抽样的原理是按照各部分所占的比例抽取样本.设从高二年级抽取的学生数为n,则,得n8.答案82.问题:某小区有800户家庭,其中高收入家庭200户,中等收入家庭480户,低收入家庭120户,为了了解有关家用轿车购买力的某个指标,要从中抽取一个容量为100的样。

7、章末检测试卷(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1计算cos(780)的值是()A B C. D.考点诱导公式一题点诱导公式一答案C解析cos(780)cos 780cos(360260)cos 60,故选C.2角的终边上有一点P(a,a)(a0),则sin 的值是()A. B C1 D.或考点任意角的三角函数题点用定义求三角函数值答案D解析r|a|,所以sin 所以sin 的值是或.3sin 240tan 600的值是()A B.C D.考点同名诱导公式综合应用题点同名诱导公式综合应用答案B解析由诱导公式得sin 240tan 600.故选B.4函数ysin的周。

8、章末复习课,第2章 平面向量,学习目标 1.回顾梳理向量的有关概念,进一步体会向量的有关概念的特征. 2.系统整理向量线性运算、数量积运算及相应的运算律和运算性质. 3.体会应用向量解决问题的基本思想和基本方法. 4.进一步理解向量的“工具”性作用.,题型探究,知识梳理,内容索引,当堂训练,知识梳理,1.向量的运算:设a(x1,y1),b(x2,y2).,三角形,(x1x2,y1y2),平行四边形,三角形,(x1x2,y1y2),(x1,y1),相同,相反,x1x2y1y2,2.两个定理 (1)平面向量基本定理 定理:如果e1,e2是同一平面内的两个 向量,那么对于这一平面内的 向量a, 实数1。

9、滚动训练(四)一、填空题1在ABC中,已知AB3,A120,且ABC的面积为,则BC_.考点用正弦、余弦定理解三角形题点用正弦、余弦定理解三角形答案7解析由SABC,得3ACsin 120,所以AC5,由余弦定理,得BC2AB2AC22ABACcos 12092523549,解得BC7.2已知数列an对任意的p,qN*满足apqapaq,且a26,那么a10_.考点数列的递推公式题点由递推公式求项答案30解析由已知a4a2a212,a8a4a424,a10a8a230.3设平面点集A,B(x,y)|(x1)2(y1)21,则AB所表示的平面图形的面积为_考点不等式(组)表示平面区域的应用题点平面区域的面积答案解析平面点集A表示的平面区。

10、第2章检测试卷(A)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1为评估一种农作物的种植效果,选了n块地作试验田这n块地的亩产量(单位:kg)分别为x1,x2,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()Ax1,x2,xn的平均数 Bx1,x2,xn的标准差Cx1,x2,xn的最大值 Dx1,x2,xn的中位数答案B解析标准差能反映一组数据的稳定程度2从10个篮球中任取一个,检查其质量,用随机数表法抽取样本,则应编号为()A1,2,3,4,5,6,7,8,9,10B5,4,3,2,1,0,1,2,3,4C10,20,30,40,50,60,70,80,90,100D0,1。

11、章末检测试卷(二)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1若(1,2),(1,1),则等于()A(2,3) B(0,1) C(1,2) D(2,3)答案D解析(1,2),(1,1),所以(11,12)(2,3)2设e1,e2为基底向量,已知向量e1ke2,2e1e2,3e13e2,若A,B,D三点共线,则k的值是()A2 B3 C2 D3答案A解析易知e12e2(e12e2),又A,B,D三点共线,则,则k2,故选A.3已知A(2,3),(3,2),则点B和线段AB的中点M坐标分别为()AB(5,5),M(0,0) BB(5,5),MCB(1,1),M(0,0) DB(1,1),M答案B解析(2,3)(3,2)(5,5),AB中点M.4已知有向线段,不。

12、阶段滚动训练二(范围:3.13.4)一、选择题1一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和不小于15的概率为()A. B. C. D.答案D解析从中有放回地取2次,所取号码共有8864(种),其中编号和不小于15的有3种,分别是(7,8),(8,7),(8,8),故所求概率P.2将红、黑、蓝、白4张牌随机地分发给甲、乙、丙、丁4个人,每人分得1张,则事件“甲分得红牌”与事件“乙分得红牌”是()A对立事件B不可能事件C互斥事件,但不是对立事件D以上答案都不对答案C解析记事件A甲分得红牌,记事件。

13、章末复习课,第3章 概率,学习目标 1.理解频率与概率的关系,会用随机模拟的方法用频率估计概率; 2.掌握随机事件的概率及其基本性质,能把较复杂的事件转化为较简单的互斥事件求概率; 3.能区分古典概型与几何概型,并能求相应概率.,题型探究,知识梳理,内容索引,当堂训练,知识梳理,知识点一 频率与概率,频率是概率的 ,是随机的,随着试验的不同而 ;概率是多数次的试验中 的稳定值,是一个 ,不要用一次或少数次试验中的频率来估计概率.,常数,近似值,变化,频率,知识点二 求较复杂概率的常用方法,1.将所求事件转化为彼此 的事件的和. 2.先。

14、章末复习课,第3章 三角恒等变换,学习目标 1.进一步掌握三角恒等变换的方法. 2.会运用正弦、余弦、正切的两角和与差公式与二倍角公式对三角函数式进行化简、求值和证明.,题型探究,知识梳理,内容索引,当堂训练,知识梳理,1.两角和与差的正弦、余弦、正切公式 cos() . cos() . sin() . sin() .tan() .tan() .,cos cos sin sin cos cos sin sin sin cos cos sin sin cos cos sin ,2.二倍角公式 sin 2 。

15、章末检测试卷(二)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1已知数列an中,a11,a23,anan1(n3),则a5等于()A. B. C4 D5考点数列的递推公式题点由递推公式求项答案A解析a3a2314,a4a34,a5a4.2等差数列an中,a1a510,a47,则数列an的公差为()A1 B2 C3 D4答案B解析a1a52a310,a35,da4a3752.3公比为2的等比数列an的各项都是正数,且a3a1116,则a5等于()A1 B2 C4 D8答案A解析a3a11a16,a74,a51.4在等差数列an中,已知a4a816,则该数列前11项的和S11等于()A58 B88 C143 D176答案B解析S。

16、章末检测试卷(一)(时间:120分钟满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1设Ax|3x3,By|yx2t若AB,则实数t的取值范围是_答案(,3)解析By|yt,结合数轴可知t3.2已知集合Mx|x0,xR,Nx|x21,xR,则MN_.答案x|0x1解析Nx|1x1,MNx|0x13设全集U1,2,3,4,5,M3,5,N2,3,4,则图中阴影部分所表示的集合是_答案2,4解析阴影部分为N(UM)2,44已知集合A1,3,2m1,集合B3,m2,若BA,则实数m_.答案1解析由m22m1得m1,经检验m1满足题意5设集合Ax|x2(a3)x3a0,Bx|x25x40,。

17、章末检测(三)(满分160分,时间120分钟)一、填空题(本大题共14小题,每小题5分,共70分)1.下列说法正确的是_.(填序号)抛掷一枚骰子10次,其中数字6向上的出现了5次,那么抛掷一枚骰子数字6向上的概率约为0.5;某地在30天内下雨15天,那么某地每天下雨的概率约为0.5;进行10 000次抛掷硬币试验,出现5 021次正面向上,那么抛掷一枚硬币正面向上的概率约为0.5;某人买了2张体育彩票,其中1张体育彩票中奖,那么购买1张体育彩票中奖的概率约为0.5.解析本题容易将频率与概率混为一谈,事实上,只有进行了大量重复试验,其余三个都是事件的频率.。

18、第3章检测试卷(B)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1以下事件是随机事件的是()A下雨屋顶湿 B秋后柳叶黄C有水就有鱼 D水结冰体积变大答案C解析A,B,D是必然事件2盘子里有肉馅、素馅和豆沙馅的包子共10个,从中随机取出1个,若它是肉馅包子的概率为,它不是豆沙馅包子的概率为,则素馅包子的个数为()A1 B2 C3 D4答案C解析由题意,可知这个包子是肉馅或素馅的概率为,所以它是素馅包子的概率为,故素馅包子的个数为103.3从一箱产品中随机地抽取一件,设事件A抽到一等品,事件B抽到二等品,事件C抽到。

19、章末检测试卷(三)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1sin 80cos 70sin 10sin 70等于()A B C. D.考点两角和与差的余弦公式题点利用两角和与差的余弦公式化简求值答案C解析sin 80cos 70sin 10sin 70cos 10cos 70sin 10sin 70cos(7010)cos 60,故选C.2已知为第二象限角,sin ,则sin的值等于()A. B.C. D.答案A解析sin ,是第二象限角,cos ,则sinsin cos cos sin .故选A.3若(4tan 1)(14tan )17,则tan()的值为(。

20、第3章检测试卷(A)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1下列事件中,随机事件的个数是()2020年8月18日,北京市不下雨;在标准大气压下,水在4时结冰;从标有1,2,3,4的4个号签中任取一个,恰为1号签;若xR,则x20.A1 B2 C3 D4答案B解析为随机事件,为不可能事件,为必然事件2老师为研究男女同学数学学习的差异情况,对某班50名同学(其中男同学30名,女同学20名)采取分层抽样的方法,抽取一个容量为10的样本进行研究,则女同学甲被抽到的概率为()A. B. C. D.答案C解析因为在分层抽样中,每位同学被抽到。

【2019苏教版高中数学必修四】相关PPT文档
【2019苏教版高中数学必修四】相关DOC文档
标签 > 2019苏教版高中数学必修四第3章[编号:169127]