2.4圆周角2ppt课件

,导入新课,讲授新课,当堂练习,课堂小结,第三章 圆,3.4 圆周角和圆心角的关系,第2课时 圆周角和直径的关系及圆内接四边形,北师大版九年级下册数学教学课件,1.复习并巩固圆周角和圆心角的相关知识. 2.理解并掌握圆内接四边形的概念及性质并学会运用. (重点),学习目标,问题1 什么是圆周角?,导

2.4圆周角2ppt课件Tag内容描述:

1、,导入新课,讲授新课,当堂练习,课堂小结,第三章 圆,3.4 圆周角和圆心角的关系,第2课时 圆周角和直径的关系及圆内接四边形,北师大版九年级下册数学教学课件,1.复习并巩固圆周角和圆心角的相关知识. 2.理解并掌握圆内接四边形的概念及性质并学会运用. (重点),学习目标,问题1 什么是圆周角?,导入新课,复习引入,特征:, 角的顶点在圆上., 角的两边都与圆相交.,顶点在圆上,并且两边都和圆相交的角叫圆周角.,问题2 什么是圆周角定理?,圆上一条弧所对的圆周角等于它所对的圆心角的一半.,即 ABC = AOC.,导入新课,情境引入,如图是一个圆形笑脸,给。

2、以练助学 人教版数学九年级上册 第四章圆的有关性质 4.4.1圆周角及其定理 第 四 章 圆 的 有 关 性 质 第 4 课 时 主讲人:小XX 以练助学 知识点1 圆周角 顶点在圆上,并且两边都与圆相交的角,叫做圆周角 如图,点ABCDE。

3、人教版数学九年级上册 第四章圆的有关性质 4.4圆周角 第 四 章 圆 的 有 关 性 质 第 4 课 时 主讲人:小XX 学习目标学习目标 1.理解圆周角的定义,了解与圆心角的关系,会在具体情景中辨别圆周角。 2.掌握圆周角定理及推论,并。

4、24.1 圆的有关性质,第二十四章 圆,24.1.4 圆周角,导入新课,讲授新课,当堂练习,课堂小结,学习目标,1.理解圆周角的概念,会叙述并证明圆周角定理. 2.理解圆周角与圆心角的关系并能运用圆周角定理解决简单的几何问题.(重点、难点) 3.理解掌握圆周角定理的推论及其证明过程和运用.(难点),问题1 什么叫圆心角?指出图中的圆心角?,顶点在圆心的角叫圆心角, BOC.,导入新课,问题2 如图,BAC的顶点和边有哪些特点?,A,BAC的顶点在O上,角的两边分别交O于B、C两点.,复习引入,视频引入,思考: 图中过球门A、C两点画圆,球员射中球门的难易程度与。

5、2 24 4. .1 1 圆的有关性质圆的有关性质 24.1 24.1 圆的有关性质 24.1.4 24.1.4 圆周角 人教版人教版 数学数学 九九年级年级 上册上册 2 24 4. .1 1 圆的有关性质圆的有关性质 问题问题1 什么叫。

6、 特征:特征: 角的顶点在圆上角的顶点在圆上. 角的两边都与圆相交角的两边都与圆相交. 顶点在圆上顶点在圆上,并且两边都和圆相交的角叫圆周角并且两边都和圆相交的角叫圆周角. 旧知回放旧知回放 圆周角定义圆周角定义: : 圆周角定理:圆周角定理: 一条弧所对的一条弧所对的圆周角圆周角等于它所对的等于它所对的圆心角圆心角的的一半一半 圆周角定理的推论:圆周角定理的推论: 半圆(或直径)半圆(或直径。

7、,苏科数学,第2章 对称图形,2.4 圆周角(1),南京市二十九中致远初级中学 汪进,问题情境,足球训练场上教练在球门前画了一个圆圈,进行无人防守的射门训练,如图,甲、乙两名运动员分别在C、D两地,他们争论不休,都说自己所在位置,射门角度大,射门的机率高。如果你是教练,请评一评他们两个人,如果仅从射门角度的大小考虑,谁的位置射门更有利?,苏科数学,观察与讨论,实践探索一:圆周角的概念,1.上图中的D、C有什么特征?请你为具备这样特征的角命名.,定义:顶点在圆上,并且两边都和圆相交的角叫做圆周角,基础练习,2判断下列各图中的。

8、,苏科数学,第2章 对称图形,2.4 圆周角(3),南京市二十九中致远初级中学 汪进,1、如图,ABC叫O的_三角形,O叫ABC的 _ 圆。2、 如图,若弧BC的度数为1000, 则BOC=_ ,A= _,内接,外接,100,50,问题情境,说说图中的四边形和圆有什么特点?,你能给图中的四边形和圆起个名字吗?,苏科数学,观察与讨论,一个四边形的4个顶点都在同一个圆上,这个四边形叫做圆内接四边形,这个圆叫做四边形的外接圆,定义:,如图,四边形ABCD是O的内接四边形, O是四边形ABCD的外接圆,观察与讨论,1已知四边形ABCD是O的内接四边形,当BD是直径时,你能发现A与C、ABC与AD。

9、,苏科数学,第2章 对称图形,2.4 圆周角(2),南京市二十九中致远初级中学 汪进,问题情境,现有一张圆形纸片,只利用一把直角三角板, 你能量出直径的长度吗?你能确定圆心的位置吗?,苏科数学,观察与讨论,问题1 如图,BC是O的直径,你能确定 圆周角BAC的度数吗?,苏科数学,观察与讨论,问题2 如图,圆周角BAC 90,若连接BC, 则BC经过圆心O吗?为什么?,归纳与小结,圆周角定理的推论:直径所对的圆周角是直角; 90的圆周角所对的弦是直径,例题讲解,例1 如图,AB是O的直径,弦CD与AB相交于点E, ACD60,ADC50,求CEB的度数,合作探究,例2 如图,。

【2.4圆周角2ppt课件】相关PPT文档
标签 > 2.4圆周角2ppt课件[编号:133422]