2.3.2平面向量的坐标运算 第1课时平面向量的坐标表示及坐标运算 一、选择题 1已知M(2,3),N(3,1),则的坐标是() A(2,1) B(1,2) C(2,1) D(1,2) 考点平面向量的正交分解及坐标表示 题点平面向量的正交分解及坐标表示 答案B 解析(2,3)(3,1)(1,2) 2
2.3.2 向量数量积的运算律课时对点练含答案Tag内容描述:
1、2.3.2平面向量的坐标运算第1课时平面向量的坐标表示及坐标运算一、选择题1已知M(2,3),N(3,1),则的坐标是()A(2,1) B(1,2) C(2,1) D(1,2)考点平面向量的正交分解及坐标表示题点平面向量的正交分解及坐标表示答案B解析(2,3)(3,1)(1,2)2已知ab(1,2),ab(4,10),则a等于()A(2,2) B(2,2)C(2,2) D(2,2)考点平面向量坐标运算的应用题点利用平面向量的坐标运算求向量的坐标答案D3若向量a(1,1),b(1,1),c(4,2),则c等于()A3ab B3abCa3b Da3b考点平面向量的坐标运算的应用题点用坐标形式下的基底表示向量答案A解析设cxayb,则解得c3ab.4已知。
2、5从力做的功到向量的数量积一、选择题1已知|a|3,|b|4,且a与b的夹角150,则ab等于()A6 B6 C6 D6考点平面向量数量积的运算性质与法则题点数量积运算与求值答案C2已知|a|9,|b|6,ab54,则a与b的夹角为()A45 B135 C120 D150答案B解析cos ,又0180,135.3已知|a|2,|b|3,|ab|,则|ab|等于()A. B. C. D.答案A解析因为|ab|219,所以a22abb219,所以2ab19496.于是|ab|.4若|a|2,|b|4,向量a与向量b的夹角为120,则向量a在向量b方向上的射影等于()A3 B。
3、6平面向量数量积的坐标表示一、选择题1已知向量a(5,6),b(6,5),则a与b()A垂直 B不垂直也不平行C平行且同向 D平行且反向答案A解析ab56650,ab.2已知向量a(1,n),b(1,n),若2ab与b垂直,则|a|等于()A1 B. C2 D4答案C解析(2ab)b2ab|b|22(1n2)(1n2)n230,n23,|a|2.3若向量a(1,2),b(1,1),则2ab与ab的夹角等于()A B. C. D.答案C解析2ab2(1,2)(1,1)(3,3),ab(1,2)(1,1)(0,3),(2ab)(ab)9,|2ab|3,|ab|3.设所求两向量的夹角为,则cos ,又0,.4若a。
4、6 6. .3.53.5 平面向量数量积的坐标表示平面向量数量积的坐标表示 1多选设向量 a2,0,b1,1,则下列结论中正确的是 Aab2 Ba b0 Cab Dabb 答案 AD 解析 ab22,故 A 正确,B,C 显然错误, ab1。
5、6 6. .2.42.4 向量的数量积向量的数量积 二二 1已知单位向量 a,b,则2ab 2ab的值为 A. 3 B. 5 C3 D5 答案 C 解析 由题意得2ab 2ab4a2b2413. 2已知平面向量 a,b 满足 a ab3 且。
6、6 6. .2.42.4 向量的数量积向量的数量积 一一 1若a3,b4,a,b 的夹角为 135 ,则 a b 等于 A3 2 B6 2 C6 2 D2 答案 B 解析 a babcos 135 34226 2. 2在四边形 ABCD 中。
7、2.4向量的数量积第1课时向量的数量积一、选择题1已知|a|3,|b|4,且a与b的夹角150,则ab等于()A6 B6 C6 D6考点平面向量数量积的运算性质与法则题点数量积运算与求值答案C2已知a,b方向相同,且|a|2,|b|4,则|2a3b|等于()A16 B256 C8 D64考点平面向量数量积的应用题点利用数量积求向量的模答案A解析|2a3b|24a29b212ab1614496256,|2a3b|16.3设非零向量a,b,c满足|a|b|c|,abc,则a与b的夹角为()A150 B120 C60 D30考点平面向量数量积的应用题点利用数量积求向量的夹角答案B解析由|a|b|c|且abc,得|ab|b|,平方得|a|2|b|22a。
8、第2课时平面向量数量积的坐标运算一、选择题1已知a(3,1),b(1,2),则a与b的夹角为()A. B. C. D.考点平面向量夹角的坐标表示与应用题点求坐标形式下的向量的夹角答案B解析|a|,|b|,ab5.cosa,b.又a,b的夹角范围为0,a与b的夹角为.2设向量a(2,0),b(1,1),则下列结论中正确的是()A|a|b| Bab0Cab D(ab)b考点平面向量平行与垂直的坐标表示与应用题点向量垂直的坐标表示的综合应用答案D解析ab(1,1),所以(ab)b110,所以(ab)b.3已知向量a(0,2),b(1,),则向量a在b方向上的投影为()A. B3 C D3考点平面向量投影的坐标表示与应用题点平面向。
9、2.3平面向量的数量积2.3.1向量数量积的物理背景与定义2.3.2向量数量积的运算律一、选择题1.已知|a|3,|b|4,且a与b的夹角150,则ab等于()A.6 B.6 C.6 D.6答案C2.已知|a|9,|b|6,ab54,则a与b的夹角为()A.45 B.135 C.120 D.150答案B解析cos ,又0180,135.3.已知|a|2,|b|3,|ab|,则|ab|等于()A. B. C. D.答案A解析因为|ab|219,所以a22abb219,所以2ab19496.于是|ab|.4.若|a|2,|b|4,向量a与向量b的夹角为120,则向量a在向量b方向上的正射影的数量等于()A.3 。
10、2.3.2向量数量积的运算律一、基础达标1设为两个非零向量a,b的夹角,已知对任意实数t,|bta|的最小值为1.()A若确定,则|a|唯一确定B若确定,则|b|唯一确定C若|a|确定,则唯一确定D若|b|确定,则唯一确定答案B解析|bta|2b22abtt2a2|a|2t22|a|b|cost|b|2.因为|bta|min1,所以|b|2(1cos2)1.所以|b|2sin21,所以|b|sin1,即|b|.即确定,|b|唯一确定2已知向量a,b,其中|a|,|b|2,且(ab)a,则向量a和b的夹角是()A. B. C. D答案A解析由题意知(ab)aa2ab2ab0,ab2,设a与b的夹角为,则cos,.3已知向量a,b的夹角为120,|a|1,|b。