5.2.2 导数的四则运算法则导数的四则运算法则 1(多选)下列运算中正确的是( ) A(ax2bxc)a(x2)b(x) B(sin x2x2)(sin x)2(x2) C. sin x x2 sin xx 2 x2 D(cos x sin x)(cos x)sin xcos x(sin x) 答
2.2 空间向量的运算二课时对点练含答案Tag内容描述:
1、5.2.2 导数的四则运算法则导数的四则运算法则 1(多选)下列运算中正确的是( ) A(ax2bxc)a(x2)b(x) B(sin x2x2)(sin x)2(x2) C. sin x x2 sin xx 2 x2 D(cos x sin x)(cos x)sin xcos x(sin x) 答案 AD 解析 A 项中,(ax2bxc)a(x2)b(x),故正确; B 项中,(sin 。
2、6 6. .3.23.2 平面向量的正交分解及坐标表示平面向量的正交分解及坐标表示 6 6. .3.33.3 平面向量加平面向量加减运算的坐标表示减运算的坐标表示 1已知 M2,3,N3,1,则NM的坐标是 A2,1 B1,2 C2,1 D。
3、 4 用向量讨论垂直与平行用向量讨论垂直与平行 第第 1 课时课时 用空间向量解决立体几何中的平行问题用空间向量解决立体几何中的平行问题 一、选择题 1.若直线 l 的方向向量为 a,平面 的法向量为 ,则能使 l 的是( ) A.a(1,0,0),(2,0,0) B.a(1,3,5),(1,0,1) C.a(0,2,1),(1,0,1) D.a(1,1,3),(0,3,1) 考点 直线的方向向量与平面的法向量 题点 求直线的方向向量 答案 D 解析 由 l,故 a,即 a 0,故选 D. 2.已知直线 l1的方向向量 a(2, 3, 5), 直线 l2的方向向量 b(4, x, y), 若两直线 l1l2, 则 x,y 的值分别是。
4、第第 2 课时课时 用空间向量解决立体几何中的垂直问题用空间向量解决立体几何中的垂直问题 一、选择题 1.设直线 l1,l2的方向向量分别为 a(2, 2,1),b(3, 2, m), 若 l1l2, 则 m 等于( ) A.2 B.2 C.6 D.10 考点 向量法求解直线与直线的位置关系 题点 方向向量与线线垂直 答案 D 解析 因为 ab,故 a b0, 即232(2)m0,解得 m10. 2.若平面 , 的法向量分别为 a(1,2,4),b(x,1,2),并且 ,则 x 的值为 ( ) A.10 B.10 C.1 2 D. 1 2 考点 向量法求解平面与平面的位置关系 题点 向量法解决面面垂直 答案 B 解析 因为 ,所以它们的法向。
5、2.3平面向量的数量积2.3.1向量数量积的物理背景与定义2.3.2向量数量积的运算律一、选择题1.已知|a|3,|b|4,且a与b的夹角150,则ab等于()A.6 B.6 C.6 D.6答案C2.已知|a|9,|b|6,ab54,则a与b的夹角为()A.45 B.135 C.120 D.150答案B解析cos ,又0180,135.3.已知|a|2,|b|3,|ab|,则|ab|等于()A. B. C. D.答案A解析因为|ab|219,所以a22abb219,所以2ab19496.于是|ab|.4.若|a|2,|b|4,向量a与向量b的夹角为120,则向量a在向量b方向上的正射影的数量等于()A.3 。
6、4平面向量的坐标4.1平面向量的坐标表示4.2平面向量线性运算的坐标表示一、选择题1已知M(2,3),N(3,1),则的坐标是()A(2,1) B(1,2) C(2,1) D(1,2)考点平面向量的正交分解及坐标表示题点平面向量的正交分解及坐标表示答案B解析(2,3)(3,1)(1,2)2已知向量a(1,2),b(1,0),那么向量3ba的坐标是()A(4,2) B(4,2) C(4,2) D(4,2)答案D解析3ba3(1,0)(1,2)(3,0)(1,2)(4,2),故选D.3已知ab(1,2),ab(4,10),则a等于()A(2,2) B(2,2) C(2,2) D(2,2)答案D4已知两点A(4,1),B(7,3),则与向量同向的单位向量是()A. B.C. D.考点平面向量的坐标运算。
7、6 6. .2.42.4 向量的数量积向量的数量积 二二 1已知单位向量 a,b,则2ab 2ab的值为 A. 3 B. 5 C3 D5 答案 C 解析 由题意得2ab 2ab4a2b2413. 2已知平面向量 a,b 满足 a ab3 且。
8、2.3.2平面向量的坐标运算第1课时平面向量的坐标表示及坐标运算一、选择题1已知M(2,3),N(3,1),则的坐标是()A(2,1) B(1,2) C(2,1) D(1,2)考点平面向量的正交分解及坐标表示题点平面向量的正交分解及坐标表示答案B解析(2,3)(3,1)(1,2)2已知ab(1,2),ab(4,10),则a等于()A(2,2) B(2,2)C(2,2) D(2,2)考点平面向量坐标运算的应用题点利用平面向量的坐标运算求向量的坐标答案D3若向量a(1,1),b(1,1),c(4,2),则c等于()A3ab B3abCa3b Da3b考点平面向量的坐标运算的应用题点用坐标形式下的基底表示向量答案A解析设cxayb,则解得c3ab.4已知。
9、6.3.46.3.4 平面向量数乘运算的坐标表示平面向量数乘运算的坐标表示 1.下列各组向量中,能作为表示它们所在平面内所有向量的基底的是 A.e12,2,e21,1 B.e11,2,e24,8 C.e11,0,e20,1 D.e11,2,。
10、第2课时平面向量数量积的坐标运算一、选择题1已知a(3,1),b(1,2),则a与b的夹角为()A. B. C. D.考点平面向量夹角的坐标表示与应用题点求坐标形式下的向量的夹角答案B解析|a|,|b|,ab5.cosa,b.又a,b的夹角范围为0,a与b的夹角为.2设向量a(2,0),b(1,1),则下列结论中正确的是()A|a|b| Bab0Cab D(ab)b考点平面向量平行与垂直的坐标表示与应用题点向量垂直的坐标表示的综合应用答案D解析ab(1,1),所以(ab)b110,所以(ab)b.3已知向量a(0,2),b(1,),则向量a在b方向上的投影为()A. B3 C D3考点平面向量投影的坐标表示与应用题点平面向。
11、2.1.5向量共线的条件与轴上向量坐标运算一、选择题1.在ABC中,已知D是AB边上的一点,若,则等于()A. B. C. D.答案B解析A,B,D三点共线,1,.2.已知a,b是不共线的向量,a2b,a(1)b,且A,B,C三点共线,则实数的值为()A.1 B.2C.2或1 D.1或2考点平行向量基本定理及其应用题点利用平行向量基本定理求参数答案D解析因为A,B,C三点共线,所以存在实数k使k.因为a2b,a(1)b,所以a2bka(1)b.因为a与b不共线,所以解得2或1.3.设a,b不共线,2apb,ab,a2b,若A,B,D三点共线,则实数p的值是()A.2 B.1 C.1 D.2答案B解析ab,a2b,2ab.又A,B,D三。
12、2.2.2向量的正交分解与向量的直角坐标运算一、选择题1.已知向量a(1,2),b(1,0),那么向量3ba的坐标是()A.(4,2) B.(4,2) C.(4,2) D.(4,2)答案D解析3ba3(1,0)(1,2)(3,0)(1,2)(31,02)(4,2),故选D.2.已知ab(1,2),ab(4,10),则a等于()A.(2,2) B.(2,2) C.(2,2) D.(2,2)答案D3.已知向量a(1,2),b(2,3),c(3,4),且c1a2b,则1,2的值分别为()A.2,1 B.1,2 C.2,1 D.1,2答案D解析由解得4.在ABCD中,已知(3,7),(2,3),对角线AC,BD相交于点O,则的坐标是()A. B.C. D.答案B解析()(2,3)(3,7),故选B.5.已知向量a(5,2),。
13、2.3.2向量数量积的运算律一、基础达标1设为两个非零向量a,b的夹角,已知对任意实数t,|bta|的最小值为1.()A若确定,则|a|唯一确定B若确定,则|b|唯一确定C若|a|确定,则唯一确定D若|b|确定,则唯一确定答案B解析|bta|2b22abtt2a2|a|2t22|a|b|cost|b|2.因为|bta|min1,所以|b|2(1cos2)1.所以|b|2sin21,所以|b|sin1,即|b|.即确定,|b|唯一确定2已知向量a,b,其中|a|,|b|2,且(ab)a,则向量a和b的夹角是()A. B. C. D答案A解析由题意知(ab)aa2ab2ab0,ab2,设a与b的夹角为,则cos,.3已知向量a,b的夹角为120,|a|1,|b。
14、6 6. .2.32.3 向量的数乘运算向量的数乘运算 1下列说法中正确的是 Aa 与 a 的方向不是相同就是相反 B若 a,b 共线,则 ba C若b2a,则 b 2a D若 b 2a,则b2a 答案 D 2多选下列各式计算正确的有 A7。
15、6 6. .2.22.2 向量的减法运算向量的减法运算 1.如图所示,在ABCD 中,ABa,ADb,则用 a,b 表示向量AC和BD分别是 Aab 和 ab Bab 和 ba Cab 和 ba Dba 和 ba 答案 B 解析 由向量的加。
16、6.26.2 平面向量的运算平面向量的运算 6 6. .2.12.1 向量的加法运算向量的加法运算 1.如图,在正六边形 ABCDEF 中,BACDEF等于 A0 B.BE C.AD D.CF 答案 D 解析 BACDEFDECDEFCEE。
17、2.2向量的减法一、选择题1化简所得的结果是()A. B. C0 D.答案C解析0.2在平行四边形ABCD中,等于()A. B. C. D.考点向量加减法的综合运算及应用题点利用向量的加、减法化简向量答案C解析在平行四边形ABCD中,所以().3在平行四边形ABCD中,下列结论错误的是()A.0 B.C. D.0答案C解析,0,A正确;,B正确;,C错误;,0,D正确4.如图,D,E,F分别是ABC的边AB,BC,CA的中点,则()A.0B.0C.0D.0答案A解析()0.5下列四个式子中可以化简为的是();.A B C D答案A解析因为,所以正确,排除C,D;。
18、 2 空间向量的运算空间向量的运算(一一) 一、选择题 1.化简PM PN MN 所得的结果是( ) A.PM B.NP C.0 D.MN 考点 空间向量的加减运算 题点 空间向量的加减运算 答案 C 解析 PM PN MN NM MN NM NM 0,故选 C. 2.空间任意四个点 A,B,C,D,则DA CD CB 等于( ) A.DB B.AC C.AB D.BA 考点 空间向量的加减运算 题点 空间向量的加减运算 答案 D 3.已知空间四边形 ABCD,连接 AC,BD,设 G 是 CD 的中点,则AB 1 2(BD BC )等于( ) A.AG B.CG C.BC D.1 2BC 考点 空间向量的加减运算 题点 空间向量的加减运算 答案 A 解析 如图,因为BD BC 2BG , 。
19、 2 空间向量的运算空间向量的运算(二二) 一、选择题 1.已知非零向量 a,b 不平行,并且其模相等,则 ab 与 ab 之间的关系是( ) A.垂直 B.共线 C.不垂直 D.以上都可能 考点 空间向量数量积的概念及性质 题点 数量积的性质 答案 A 解析 由题意知|a|b|, (ab) (ab)|a|2|b|20, (ab)(ab). 2.已知向量 a,b 满足条件:|a|2,|b| 2,且 a 与 2ba 互相垂直,则a,b等于( ) A.30 B.45 C.60 D.90 考点 空间向量数量积的应用 题点 利用数量积求角 答案 B 解析 根据 a (2ba)0, 即 2a b|a|24, 解得 a b2, 又 cosa,b a b |a|b| 2 2 2 2 2 , 又a,b。