第第 2 2 课时课时 三角函数的应用三角函数的应用 二二 课时对点练课时对点练 1.水车在古代是进行灌溉引水的工具,是人类的一项古老的发明,也是人类利用自然和改造自然的象征如图是一个半径为 R 的水车,一个水斗从点 M 2, 2出发,沿圆,3二倍角的三角函数(二) 基础过关 1下列各式与tan 相
1.3 三角函数的诱导公式二课时对点习含答案Tag内容描述:
1、第第 2 2 课时课时 三角函数的应用三角函数的应用 二二 课时对点练课时对点练 1.水车在古代是进行灌溉引水的工具,是人类的一项古老的发明,也是人类利用自然和改造自然的象征如图是一个半径为 R 的水车,一个水斗从点 M 2, 2出发,沿圆。
2、3二倍角的三角函数(二) 基础过关1下列各式与tan 相等的是()A. B.C. D.解析tan .答案D2已知180360,则cos 的值为()A B. C D. 答案C3使函数f(x)sin(2x)cos(2x)为奇函数的的一个值是()A. B. C. D.解析f(x)sin(2x)cos(2x)2sin.当时,f(x)2sin(2x)2sin 2x.答案D4已知sincos,且(,3),则tan_.解析由条件知(,),tan0.由sincos,1sin .sin ,cos ,tan2.答案25函数f(x)sin(2x)2sin2x的最小正周期是_解析f(x)sin 2xcos 2x(1cos 2x)sin。
3、第2课时二倍角的三角函数的应用一、选择题1化简的结果为()Atan Btan 2 C1 D2答案B解析原式tan 2.2若cos 2,则sin4cos4等于()A. B. C. D.答案C解析sin4cos4(sin2cos2)22sin2cos21sin221(1cos22)1.3设sin,则sin 2等于()A B. C. D答案A解析sin 2cos2sin2121.4已知tan ,则等于()A. B C D.答案D解析tan .5.等于()A2 B. C4 D.答案C解析原式4.二、填空题6若为第三象限角,则_.答案0解析为第三象限角,cos 0,sin 0, 。
4、3.2二倍角的三角函数第1课时二倍角的三角函数一、选择题1已知是第三象限角,cos ,则sin 2等于()A B. C D.答案D解析由是第三象限角,且cos ,得sin ,所以sin 22sin cos 2,故选D.2已知sin ,则cos4sin4的值为()A B C. D.答案D解析cos4sin4(cos2sin2)(cos2sin2)cos 212sin21.3化简:等于()A1 B2 C. D1考点利用二倍角公式化简求值题点综合利用二倍角公式化简求值答案B解析2.故选B.4已知sin 2,则cos2等于()A. B. C. D.答案A解析因为cos2,所以cos2.故选A.5已知为锐角,且满足cos 2sin ,则等于(。
5、 1.6 三角函数模型的简单应用三角函数模型的简单应用 一、选择题 1某人的血压满足函数式 f(t)24sin 160t110,其中 f(t)为血压,t 为时间,则此人每分钟 心跳的次数为( ) A60 B70 C80 D90 考点 三角函数模型的应用 题点 三角函数在日常生活中的应用 答案 C 2.如图是一向右传播的绳波在某一时刻绳子各点的位置图,经过1 2周期后,乙的位置将移至 ( ) A。
6、12.2 同角三角函数的基本关系同角三角函数的基本关系 一、选择题 1已知 是第二象限角,tan 1 2,则 cos 等于( ) A 5 5 B1 5 C2 5 5 D4 5 考点 运用基本关系式求三角函数值 题点 运用基本关系式求三角函数值 答案 C 解析 是第二象限角,cos 0. 又 sin2cos21,tan sin cos 1 2, cos 2 5 5 . 2下列四个结论中。
7、 1.2 任意角的三角函数任意角的三角函数 12.1 任意角的三角函数任意角的三角函数(一一) 一、选择题 1sin(315 )的值是( ) A 2 2 B1 2 C. 2 2 D.1 2 考点 诱导公式一 题点 诱导公式一的应用 答案 C 解析 sin(315 )sin(360 45 )sin 45 2 2 . 2已知角 的终边上一点 P 与点 A(3,2)关于 y 轴对称,角 的终边上一点 。
8、12.1 任意角的三角函数任意角的三角函数(二二) 一、选择题 1函数 ytan x 3 的定义域为( ) A. x x 3,xR B. x xk 6,kZ C. x xk5 6 ,kZ D. x xk5 6 ,kZ 考点 单位圆与三角函数线 题点 利用三角函数线解不等式 答案 C 解析 x 3k 2,kZ,xk 5 6 ,kZ. 2角 5和角 6 5 有相同的( 。
9、 1.3 三角函数的诱导公式三角函数的诱导公式(一一) 基础过关 1已知 sin()1 3,则 sin(2 017)的值为( ) A2 2 3 B2 2 3 C1 3 D1 3 解析 由 sin()sin 得 sin 1 3,所以 sin(2 017) sin()2 016sin()sin()sin 1 3 答案 D 2若 sin(110 )a,则 tan 70 等于( ) A a 1a2 B 。
10、 1.3 三角函数的诱导公式三角函数的诱导公式(二二) 学习目标 1.掌握诱导公式五、六的推导,并能应用于解决简单的求值、化简与证明问题. 2.对诱导公式一至六,能作综合归纳,体会出六组公式的共性与个性,培养由特殊到一般的 数学推理意识和能力 知识点一 诱导公式五 诱导公式五 sin 2 cos , cos 2 sin . 知识点二 诱导公式六 诱导公式六 sin 2 cos , 。
11、 1.3 三角函数的诱导公式三角函数的诱导公式(二二) 基础过关 1已知 sin 1 4,则 cos( 2)( ) A1 4 B1 4 C 15 4 D 15 4 解析 cos( 2)sin 1 4 答案 B 2若 sin(180 )cos(90 )a,则 cos(270 )2sin(360 )的值是( ) A2 3a B3 2a C2 3a D3 2a 解析 由条件得sin sin a,故 s。
12、 1.3 三角函数的诱导公式三角函数的诱导公式(一一) 一、选择题 1sin 315 sin(480 )cos(330 )的值为( ) A.1 2 B 1 2 C 2 2 D. 2 2 考点 同名诱导公式 题点 诱导公式一、二、三、四 答案 C 解析 原式sin(360 45 )sin(360 120 )cos(360 30 ) sin 45 sin 60 cos 30 2 2 3 2 3 。
13、1.31.3 三角函数的诱导公式三角函数的诱导公式( (二二) ) 一、选择题 1已知 cos 1 4,则 sin 2 等于( ) A.1 4 B 1 4 C. 15 4 D 15 4 考点 异名诱导公式 题点 诱导公式六 答案 A 解析 sin 2 cos 1 4. 2已知 sin 1 5,则 cos(450 )的值是( ) A.1 5 B1 5 C2 6 5 D.2 6 5 .。