1.2 类比推理 课时作业含答案

第 2 课时 类比推理课后训练案巩固提升1.给出下列三个类比结论: 类比 axay=ax+y,则有 axay=ax-y; 类比 loga(xy)=logax+logay,则有sin(+)=sin +sin ; 类比( a+b)2=a2+2ab+b2,则有( a+b)2=a2+2ab+b2.其中正确结

1.2 类比推理 课时作业含答案Tag内容描述:

1、第 2 课时 类比推理课后训练案巩固提升1.给出下列三个类比结论: 类比 axay=ax+y,则有 axay=ax-y; 类比 loga(xy)=logax+logay,则有sin(+)=sin +sin ; 类比( a+b)2=a2+2ab+b2,则有( a+b)2=a2+2ab+b2.其中正确结论的个数是( )A.0 B.1 C.2 D.3解析: 根据指数幂的运算性质知 正确; 根据正弦函数的运算性质知 错误;根据向量的运算性质知 正确,因此正确结论有 2 个.答案: C2.在等差数列a n中,有结论 ,类比该结论 ,在等比数列b n中,可有结论( )A.B.C.D.解析: 由于 b1b8=b2b7=b3b6=b4b5,所以 ,故选 D.答案: D3.设ABC 的三边长分别为 a,b,c,ABC 的面。

2、12类比推理学习目标1.了解类比推理的含义,能进行简单的类比推理.2.正确认识合情推理在数学中的重要作用知识点一类比推理思考科学家对火星进行研究,发现火星与地球有许多类似的特征:(1)火星也是绕太阳公转、绕轴自转的行星;(2)有大气层,在一年中也有季节更替;(3)火星上大部分时间的温度适合地球上某些已知生物的生存等由此,科学家猜想:火星上也可能有生命存在他们使用了什么样的推理?答案类比推理梳理类比推理的定义及特征定义由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似。

3、第2课时类比推理学习目标1.了解类比推理的含义、特征,能利用类比进行简单的推理.2.能正确区别归纳推理与类比推理的不同点,了解合情推理的合理性知识点一类比推理思考科学家对火星进行研究,发现火星与地球有许多类似的特征:(1)火星也是绕太阳公转、绕轴自转的行星;(2)有大气层,在一年中也有季节更替;(3)火星上大部分时间的温度适合地球上某些已知生物的生存等由此,科学家猜想:火星上也可能有生命存在他们使用了什么样的推理?答案类比推理梳理(1)类比推理的定义根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他。

4、1.2类比推理一、选择题1已知bn为等比数列,b52,则b1b2b3b4b5b6b7b8b929.若an为等差数列,a52,则an的类似结论为()Aa1a2a3a929Ba1a2a3a929Ca1a2a3a929Da1a2a3a9292设ABC的三边长分别为a、b、c,ABC的面积为S,内切圆的半径为r,则r,类比这个结论可知:四面体ABCD的四个面的面积分别为S1、S2、S3、S4,内切球的半径为R,四面体ABCD的体积为V,则R等于()A. B.C. D.3平面内平行于同一直线的两直线平行,由此类比可以得到()A空间中平行于同一直线的两直线平行B空间中平行于同一平面的两直线平行C空间中平行于同一直线的两平面平行D空间中平行。

5、1.2类比推理一、选择题1在平面上,若两个正三角形的边长之比为12,则它们的面积之比为14,类似地,在空间中,若两个正四面体的棱长之比为12,则它们的体积之比为()A14 B16 C18 D19考点类比推理的应用题点平面几何与立体几何之间的类比答案C解析平面上,若两个正三角形的边长之比为12,则它们的面积之比为14,类似地,由平面图形面积类比立体图形的体积,得出在空间内,若两个正四面体的棱长之比为12,则它们的底面积之比为14,对应高之比为12,所以体积之比为18,故选C.2已知bn为等比数列,b52,则b1b2b3b4b5b6b7b8b929.若an为等差数列,a。

6、1.2类比推理学习目标1.了解类比推理的含义,能进行简单的类比推理.2.正确认识合情推理在数学中的重要作用知识点一类比推理思考科学家对火星进行研究,发现火星与地球有许多类似的特征:(1)火星也是绕太阳公转、绕轴自转的行星;(2)有大气层,在一年中也有季节更替;(3)火星上大部分时间的温度适合地球上某些已知生物的生存等由此,科学家猜想:火星上也可能有生命存在他们使用了什么样的推理?答案类比推理梳理类比推理的定义及特征定义由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类。

7、1.2类比推理一、选择题1对命题“正三角形的内切圆切于三边中点”可类比猜想:正四面体的内切球切于四面体各正三角形的()A一条中线上的点,但不是中心B一条垂线上的点,但不是垂心C一条角平分线上的点,但不是内心D中心2已知扇形的弧长为l,半径为r,类比三角形的面积公式S,可推知扇形面积公式S扇等于()A. B.C. D不可类比3已知x0,由不等式x22,x33,我们可以得出推广结论:xn1(nN),则a的值为()A2n Bn2 C3n Dnn4设ABC的三边长分别为a、b、c,ABC的面积为S,内切圆半径为r,则r,类比这个结论可知:四面体SABC的四个面的面积分别为S1、S2。

【1.2 类比推理 课时作业含答】相关DOC文档
标签 > 1.2 类比推理 课时作业含答案[编号:114991]