1、第四篇 三角函数与解三角形专题4.04三角函数的图象与性质【考试要求】1.能画出三角函数ysinx,ycosx,ytanx的图象,了解三角函数的周期性、单调性、奇偶性、最大(小)值;2.借助图象理解正弦函数、余弦函数在0,2上,正切函数在上的性质.【知识梳理】1.用五点法作正弦函数和余弦函数的简图(1)正弦函数ysinx,x0,2的图象中,五个关键点是:(0,0),(,0),(2,0).(2)余弦函数ycosx,x0,2的图象中,五个关键点是:(0,1),(,1),(2,1).2.正弦、余弦、正切函数的图象与性质(下表中kZ)函数ysin xycos xytan x图象定义域RRx xk值域1
2、,11,1R周期性22奇偶性奇函数偶函数奇函数递增区间2k,2k递减区间2k,2k无对称中心(k,0)对称轴方程xkxk无【微点提醒】1.对称与周期(1)正弦曲线、余弦曲线相邻两对称中心、相邻两对称轴之间的距离是半个周期,相邻的对称中心与对称轴之间的距离是个周期.(2)正切曲线相邻两对称中心之间的距离是半个周期.2.对于ytanx不能认为其在定义域上为增函数,而是在每个区间(kZ)内为增函数.【疑误辨析】1.判断下列结论正误(在括号内打“”或“”)(1)余弦函数ycos x的对称轴是y轴.()(2)正切函数ytan x在定义域内是增函数.()(3)已知yksin x1,xR,则y的最大值为k1
3、.()(4)ysin|x|是偶函数.()【教材衍化】2.(必修4P46A2,3改编)若函数y2sin 2x1的最小正周期为T,最大值为A,则()A.T,A1 B.T2,A1C.T,A2 D.T2,A23.(必修4P47B2改编)函数ytan的单调递减区间为_.【真题体验】4.(2017全国卷)函数f(x)sin的最小正周期为()A.4 B.2 C. D.5.(2017全国卷)函数f(x)sincos的最大值为()A. B.1 C. D.6.(2018江苏卷)已知函数ysin(2x) 的图象关于直线x对称,则的值是_.【考点聚焦】考点一三角函数的定义域【例1】 (1)函数f(x)2tan的定义域
4、是()A. B.C. D.(2)不等式2cos x0的解集是_.(3)函数f(x)log2(2sin x1)的定义域是_.【规律方法】1.三角函数定义域的求法(1)以正切函数为例,应用正切函数ytan x的定义域求函数yAtan(x)的定义域转化为求解简单的三角不等式.(2)求复杂函数的定义域转化为求解简单的三角不等式.2.简单三角不等式的解法(1)利用三角函数线求解.(2)利用三角函数的图象求解.【训练1】 (1)函数y的定义域为_.(2)函数ylg(sin x)的定义域为_.考点二三角函数的值域与最值【例2】 (1)y3sin在区间上的值域是_.(2)(2017全国卷)函数f(x)sin2
5、xcos x的最大值是_.(3)函数ysin xcos xsin xcos x的值域为_.【规律方法】求解三角函数的值域(最值)常见三种类型:(1)形如yasin xbcos xc的三角函数化为yAsin(x)c的形式,再求值域(最值);(2)形如yasin2xbsin xc的三角函数,可先设sin xt,化为关于t的二次函数求值域(最值);(3)形如yasin xcos xb(sin xcos x)c的三角函数,可先设tsin xcos x,化为关于t的二次函数求值域(最值).【训练2】 (1)函数f(x)cos 2x6cos的最大值为()A.4 B.5 C.6 D.7(2)(2019临沂模
6、拟)已知函数f(x)sin,其中x,若f(x)的值域是,则实数a的取值范围是_.考点三三角函数的单调性角度1求三角函数的单调区间【例31】 (1)函数f(x)tan的单调递增区间是()A.(kZ)B.(kZ)C.(kZ)D.(kZ)(2)函数ysin的单调递减区间为_.角度2利用单调性比较大小【例32】 已知函数f(x)2cos,设af,bf,cf,则a,b,c的大小关系是()A.abc B.acbC.cab D.bac角度3利用单调性求参数【例33】 (2018全国卷)若f(x)cos xsin x在a,a是减函数,则a的最大值是()A. B. C. D.【规律方法】1.已知三角函数解析式求
7、单调区间:(1)求函数的单调区间应遵循简单化原则,将解析式先化简,并注意复合函数单调性规律“同增异减”;(2)求形如yAsin(x)或yAcos(x)(其中0)的单调区间时,要视“x”为一个整体,通过解不等式求解.但如果0)在上单调递增,在区间上单调递减,则_.考点四三角函数的周期性、奇偶性、对称性角度1三角函数奇偶性、周期性【例41】 (1)(2018全国卷)已知函数f(x)2cos2xsin2x2,则()A.f(x)的最小正周期为,最大值为3B.f(x)的最小正周期为,最大值为4C.f(x)的最小正周期为2,最大值为3D.f(x)的最小正周期为2,最大值为4(2)(2019杭州调研)设函数
8、f(x)sincos的图象关于y轴对称,则()A. B. C. D.【规律方法】1.若f(x)Asin(x)(A,0),则(1)f(x)为偶函数的充要条件是k(kZ);(2)f(x)为奇函数的充要条件是k(kZ).2.函数yAsin(x)与yAcos(x)的最小正周期T,yAtan(x)的最小正周期T.角度2三角函数图象的对称性【例42】 (1)已知函数f(x)asin xcos x(a为常数,xR)的图象关于直线x对称,则函数g(x)sin xacos x的图象()A.关于点对称 B.关于点对称C.关于直线x对称 D.关于直线x对称(2)已知函数f(x)sin(x),x为f(x)的零点,x为
9、yf(x)图象的对称轴,且f(x)在上单调,则的最大值为()A.11 B.9 C.7 D.5【答案】(1)C(2)B【规律方法】1.对于可化为f(x)Asin(x)形式的函数,如果求f(x)的对称轴,只需令xk(kZ),求x即可;如果求f(x)的对称中心的横坐标,只需令xk(kZ),求x即可.2.对于可化为f(x)Acos(x)形式的函数,如果求f(x)的对称轴,只需令xk(kZ),求x;如果求f(x)的对称中心的横坐标,只需令xk(kZ),求x即可.【训练4】 (1)(2018全国卷)函数f(x)的最小正周期为()A. B. C. D.2(2)设函数f(x)cos,则下列结论错误的是()A.
10、f(x)的一个周期为2B.yf(x)的图象关于直线x对称C.f(x)的一个零点为xD.f(x)在单调递减【反思与感悟】1.讨论三角函数性质,应先把函数式化成yAsin(x)(0)的形式.2.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令tx,将其转化为研究ysin t(或ycos t)的性质.3.数形结合是本节的重要数学思想.【易错防范】1.闭区间上最值或值域问题,首先要在定义域基础上分析单调性;含参数的最值问题,要讨论参数对最值的影响.2.要注意求函数yAsin(x)的单调区间时A和的符号,尽量化成0时情况,避免出现增减区间的混淆.3.求三角函数的单调区间时,当单
11、调区间有无穷多个时,别忘了注明kZ.【分层训练】【基础巩固题组】(建议用时:40分钟)一、选择题1.(2017山东卷)函数ysin 2xcos 2x的最小正周期为()A. B. C. D.22.(2019石家庄检测)若是函数f(x)sin xcos x图象的一个对称中心,则的一个取值是()A.2 B.4 C.6 D.83.已知函数f(x)2sin x(0)在区间上的最小值是2,则的最小值等于()A. B. C.2 D.34.(2019湖南十四校联考)已知函数f(x)2sin xcos x(0),若f(x)的两个零点x1,x2满足|x1x2|min2,则f(1)的值为()A. B. C.2 D.
12、25.若f(x)为偶函数,且在上满足:对任意x10,则f(x)可以为()A.f(x)cos B.f(x)|sin(x)|C.f(x)tan x D.f(x)12cos22x二、填空题6.(2019烟台检测)若函数f(x)cos(00).若f(x)f对任意的实数x都成立,则的最小值为_.三、解答题9.(2018北京卷)已知函数f(x)sin2xsin xcos x.(1)求f(x)的最小正周期;(2)若f(x)在区间上的最大值为,求m的最小值.10.(2019北京通州区质检)已知函数f(x)sin xcos x(0)的最小正周期为.(1)求函数yf(x)图象的对称轴方程;(2)讨论函数f(x)在
13、上的单调性.【能力提升题组】(建议用时:20分钟)11.若对于任意xR都有f(x)2f(x)3cos xsin x,则函数f(2x)图象的对称中心为()A.(kZ) B.(kZ)C.(kZ) D.(kZ)12.(2017天津卷)设函数f(x)2sin(x),xR,其中0,|.若f2,f0,且f(x)的最小正周期大于2,则()A., B.,C., D.,13.已知x0是函数f(x)sin(2x)的一个极大值点,则f(x)的单调递减区间是_.14.已知函数f(x)sinsin xcos2x.(1)求f(x)的最大值及取得最大值时x的值;(2)若方程f(x)在(0,)上的解为x1,x2,求cos(x1x2)的值.【新高考创新预测】15.(思维创新)已知函数f(x)sin,若对任意的实数,都存在唯一的实数0,m,使f()f()0,则实数m的最小值是_.17