专题11 圆(第01期)-2019年中考真题数学试题分项汇编(解析版)

上传人:hua****011 文档编号:90382 上传时间:2019-10-12 格式:DOCX 页数:12 大小:294.32KB
下载 相关 举报
专题11 圆(第01期)-2019年中考真题数学试题分项汇编(解析版)_第1页
第1页 / 共12页
专题11 圆(第01期)-2019年中考真题数学试题分项汇编(解析版)_第2页
第2页 / 共12页
专题11 圆(第01期)-2019年中考真题数学试题分项汇编(解析版)_第3页
第3页 / 共12页
专题11 圆(第01期)-2019年中考真题数学试题分项汇编(解析版)_第4页
第4页 / 共12页
专题11 圆(第01期)-2019年中考真题数学试题分项汇编(解析版)_第5页
第5页 / 共12页
点击查看更多>>
资源描述

1、专题11 圆1(2019福建)如图,PA、PB是O切线,A、B为切点,点C在O上,且ACB=55,则APB等于A55B70C110D125【答案】B【解析】连接OA,OB,PA,PB是O的切线,PAOA,PBOB,ACB=55,AOB=110,APB=360-90-90-110=70故选B2(2019重庆)如图,AB是O的直径,AC是O的切线,A为切点,若C=40,则B的度数为A60B50C40D30【答案】B【解析】AC是O的切线,ABAC,且C=40,ABC=50,故选B3(2019长沙)一个扇形的半径为6,圆心角为120,则该扇形的面积是A2B4C12D24【答案】C【解析】S=12,故

2、选C4(2019甘肃)如图,AB是O的直径,点C、D是圆上两点,且AOC=126,则CDB=A54B64C27D37【答案】C【解析】AOC=126,BOC=180-AOC=54,CDB=BOC=27故选C5(2019成都)如图,正五边形ABCDE内接于O,P为上的一点(点P不与点D重合),则CPD的度数为A30B36C60D72【答案】B【解析】如图,连接OC,ODABCDE是正五边形,COD=72,CPD=COD=36,故选B6(2019金华)如图物体由两个圆锥组成其主视图中,A=90,ABC=105,若上面圆锥的侧面积为1,则下面圆锥的侧面积为A2BCD【答案】D【解析】A=90,AB=

3、AD,ABD为等腰直角三角形,ABD=45,BD=AB,ABC=105,CBD=60,而CB=CD,CBD为等边三角形,BC=BD=AB,上面圆锥与下面圆锥的底面相同,上面圆锥的侧面积与下面圆锥的侧面积的比等于ABCB,下面圆锥的侧面积=1=故选D7(2019黄冈)如图,一条公路的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,AB=40 m,点C是的中点,且CD=10 m,则这段弯路所在圆的半径为A25 mB24 mC30 mD60 m【答案】A【解析】OCAB,AD=DB=20 m,在RtAOD中,OA2=OD2+AD2,设半径为r得:r2=(r-10)2+202,解得r=25 m,这段弯

4、路的半径为25 m,故选A8(2019山西)如图,在RtABC中,ABC=90,AB=2,BC=2,以AB的中点O为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为ABC2-D4-【答案】A【解析】在RtABC中,ABC=90,AB=2,BC=2,tanA=,A=30,DOB=60,OD=AB=,DE=,阴影部分的面积是:,故选A9(2019黄冈)用一个圆心角为120,半径为6的扇形做一个圆锥的侧面,则这个圆锥的底面圆的面积为_【答案】4【解析】扇形的弧长=4,圆锥的底面半径为42=2面积为:4,故答案为:410(2019安徽)如图,ABC内接于O,CAB=30,CBA=45,C

5、DAB于点D,若O的半径为2,则CD的长为_【答案】【解析】如图,连接CO并延长交O于E,连接BE,则E=A=30,EBC=90,O的半径为2,CE=4,BC=CE=2,CDAB,CBA=45,CD=BC=,故答案为:11(2019杭州)如图是一个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12 cm,底面圆半径为3 cm,则这个冰淇淋外壳的侧面积等于_cm2(结果精确到个位)【答案】113【解析】这个冰淇淋外壳的侧面积=2312=36113(cm2)故答案为:11312(2019福建)如图,边长为2的正方形ABCD中心与半径为2的O的圆心重合,E、F分别是AD、BA的延长与O的交点,则图中阴

6、影部分的面积是_(结果保留)【答案】-1【解析】如图,延长DC,CB交O于M,N,则图中阴影部分的面积=(S圆O-S正方形ABCD)=(4-4)=-1,故答案为:-113(2019河南)如图,在扇形AOB中,AOB=120,半径OC交弦AB于点D,且OCOA若OA=,则阴影部分的面积为_【答案】【解析】如图,作OEAB于点F,在扇形AOB中,AOB=120,半径OC交弦AB于点D,且OCOAOA=,AOD=90,BOC=90,OA=OB,OAB=OBA=30,OD=OAtan30=2,AD=4,AB=2AF=22=6,OF=,BD=2,阴影部分的面积是:SAOD+S扇形OBC-SBDO=,故答

7、案为:14(2019重庆)如图,四边形ABCD是矩形,AB=4,AD=,以点A为圆心,AB长为半径画弧,交CD于点E,交AD的延长线于点F,则图中阴影部分的面积是_【答案】【解析】如图,连接AE,ADE=90,AE=AB=4,AD=,sinAED=,AED=45,EAD=45,EAB=45,AD=DE=,阴影部分的面积是:=,故答案为:15(2019广西)九章算术作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的几何原本并称现代数学的两大源泉在九章算术中记载有一问题“今有圆材埋在壁中,不知大小以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:

8、锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为_寸【答案】26【解析】设O的半径为r在RtADO中,AD=5,OD=r-1,OA=r,则有r2=52+(r-1)2,解得r=13,O的直径为26寸,故答案为:2616(2019福建)如图,四边形ABCD内接于O,AB=AC,ACBD,垂足为E,点F在BD的延长线上,且DF=DC,连接AF、CF(1)求证:BAC=2CAD;(2)若AF=10,BC=,求tanBAD的值【解析】(1)AB=AC,ABC=ACB,ABC=ADB,ABC=(180-BAC)=90-BAC,BDAC,ADB=90-CAD,BAC=CAD,BAC=2CAD(

9、2)DF=DC,DFC=DCF,BDC=2DFC,BFC=BDC=BAC=FBC,CB=CF,又BDAC,AC是线段BF的中垂线,AB=AF=10,AC=10又BC=,设AE=x,CE=10-x,由AB2-AE2=BC2-CE2,得100-x2=80-(10-x)2,解得x=6,AE=6,BE=8,CE=4,DE=3,BD=BE+DE=3+8=11,如图,作DHAB,垂足为H,ABDH=BDAE,DH=,BH=,AH=AB-BH=10-,tanBAD=17(2019河南)如图,在ABC中,BA=BC,ABC=90,以AB为直径的半圆O交AC于点D,点E是上不与点B,D重合的任意一点,连接AE交

10、BD于点F,连接BE并延长交AC于点G(1)求证:ADFBDG;(2)填空:若AB=4,且点E是的中点,则DF的长为_;取的中点H,当EAB的度数为_时,四边形OBEH为菱形【解析】(1)BA=BC,ABC=90,BAC=45,AB是O的直径,ADB=AEB=90,DAF+BGD=DBG+BGD=90,DAF=DBG,ABD+BAC=90,ABD=BAC=45,AD=BD,ADFBDG(2)如图2,过F作FHAB于H,点E是的中点,BAE=DAE,FDAD,FHAB,FH=FD,=sinABD=sin45=,即BF=FD,AB=4,BD=4cos45=2,即BF+FD=2,( +1)FD=2,

11、FD=4-2,故答案为:4-2连接OH,EH,点H是的中点,OHAE,AEB=90,BEAE,BEOH,四边形OBEH为菱形,BE=OH=OB=AB,sinEAB=,EAB=30故答案为:3018(2019滨州)如图,在ABC中,AB=AC,以AB为直径的O分别与BC,AC交于点D,E,过点D作DFAC,垂足为点F(1)求证:直线DF是O的切线;(2)求证:BC2=4CFAC;(3)若O的半径为4,CDF=15,求阴影部分的面积【解析】(1)如图所示,连接OD,AB=AC,ABC=C,而OB=OD,ODB=ABC=C,DFAC,CDF+C=90,CDF+ODB=90,ODF=90,直线DF是O的切线(2)连接AD,则ADBC,则AB=AC,则DB=DC=,CDF+C=90,C+DAC=90,CDF=DCA,而DFC=ADC=90,CFDCDA,CD2=CFAC,即BC2=4CFAC(3)连接OE,CDF=15,C=75,OAE=30=OEA,AOE=120,SOAE=AEOEsinOEA=2OEcosOEAOEsinOEA=,S阴影部分=S扇形OAE-SOAE=42-=-

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 初中 > 初中数学 > 数学中考 > 分类汇编