1、第五章 分 式,导入新课,讲授新课,当堂练习,课堂小结,5.4 分式方程,第2课时 分式方程的解法,北师大版八年级下册数学教学课件,1.掌握可化为一元一次方程的分式方程的解法;(重点) 2.理解分式方程产生增根的原因,掌握分式方程验根的方法.(难点),学习目标,导入新课,复习引入,1. 解一元一次方程的步骤:,移项,合并同类项,未知数系数化为1.,2. 解一元一次方程,解:3x-2(x+1)=6 3x-2x=6+2 x=8,你能试着解这个分式方程吗?,(2)怎样去分母?,(3)在方程两边乘什么样的式子才能把每一个分母都约去?,(4)这样做的依据是什么?,解分式方程最关键的问题是什么?,(1)如
2、何把它转化为整式方程呢?,“去分母”,讲授新课,方程各分母最简公分母是:(30+x)(30-x),解:方程两边同乘(30+x)(30-x),得,检验:将x=6代入原分式方程中,左边= =右边, 因此x=6是原分式方程的解.,90(30-x)=60(30+x),,解得 x=6.,x=6是原分式方程的解吗?,解分式方程的基本思路:是将分式方程化为整式方程,具体做法是“去分母” 即方程两边同乘最简公分母.这也是解分式方程的一般方法.,归纳总结,下面我们再讨论一个分式方程:,解:方程两边同乘(x+5)(x-5),得,x+5=10,,解得 x=5.,x=5是原分式方程的解吗?,检验:将x=5代入原方程中
3、,分母x-5和x2-25的值都为0,相应的分式无意义.因此x=5虽是整式方程x+5=10的解,但不是原分式方程 的解,实际上,这个分式方程无解.,想一想: 上面两个分式方程中,为什么 去分母后所得整式方程的解就是原分式方程的解, 而 去分母后所得整式方程的解却不是原分式方程的解呢?,真相揭秘: 分式两边同乘了不为0的式子,所得整式方程的解与分式方程的解相同.,我们再来观察去分母的过程:,真相揭秘:分式两边同乘了等于0的式子,所得整式方程的解使分母为0,这个整式方程的解就不是原分式方程的解.,解分式方程时,去分母后所得整式方程的解有可能使原方程的分母为0,所以分式方程的解必须检验,怎样检验?,这
4、个整式方程的解是不是原分式的解呢?,分式方程解的检验-必不可少的步骤,检验方法: 将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解.,1.在方程的两边都乘以最简公分母,约去分母,化成整式方程. 2.解这个整式方程. 3.把整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则须舍去。 4.写出原方程的根.,简记为:“一化二解三检验”.,知识要点,“去分母法”解分式方程的步骤,例1 解方程:,解 :方程两边都乘最简公分母x(x2),得,解这个一元一次方程,得 x = 3.,检验:把 x=3
5、代入原方程的左边和右边,得,因此 x = 3 是原方程的解,典例精析,解:两边都乘以最简公分母(x+2)(x-2), 得 x+2=4.,解得 x=2.,检验:把x=2代入原方程,两边分母为0,分式无意义. 因此x=2不是原分式方程的解,从而原方程无解.,提醒:在去分母,将分式方程转化为整式方程解的过程中出现使最简公分母(或分母)为零的根是增根.,用框图的方式总结为:,否,是,例2,关于x的方程 的解是正数,则a的取值范围是_,解析:去分母得2xax1,解得xa1,关于x的方程 的解是正数,x0且x1,a10且a11,解得a1且a2,a的取值范围是a1且a2.,方法总结:求出方程的解(用未知字母
6、表示),然后根据解的正负性,列关于未知字母的不等式求解,特别注意分母不能为0.,a1且a2,若关于x的分式方程 无解,求m的值,例3,解析:先把分式方程化为整式方程,再分两种情况讨论求解:一元一次方程无解与分式方程有增根,解:方程两边都乘以(x2)(x2)得2(x2)mx3(x2),即(m1)x10. 当m10时,此方程无解,此时m1; 方程有增根,则x2或x2, 当x2时,代入(m1)x10得(m1)210,m4; 当x2时,代入(m1)x10得(m1)(2)10,解得m6, m的值是1,4或6.,分式方程无解与分式方程有增根所表达的意义是不一样的分式方程有增根仅仅针对使最简公分母为0的数,
7、分式方程无解不但包括使最简公分母为0的数,而且还包括分式方程化为整式方程后,使整式方程无解的数,方法总结,1. 解分式方程 时,去分母后得到的整式方程是( ) A.2(x-8)+5x=16(x-7) B.2(x-8)+5x=8 C.2(x-8)-5x=16(x-7) D.2(x-8)-5x=8,A,2若关于x的分式方程 无解,则m的值为 ( ) A1,5 B1 C1.5或2 D0.5或1.5,D,当堂练习,3.解方程,解: 方程两边乘x(x-3),得,2x=3x-9.,解得,x=9.,检验:当x=9时,x(x-3) 0.,所以,原分式方程的解为x=9.,4.解方程,解: 方程两边乘(x-1)(
8、x+2),得,x(x+2)-(x-1)(x+2)=3.,解得,x=1.,检验:当x=1时, (x-1)(x+2) =0, 因此x=1不是原分式方程的解.,所以,原分式方程无解.,5. 解方程:,解:去分母,得,解得,检验:把 代入,所以原方程的解为,6.若关于x的方程 有增根,求m的值.,解:方程两边同乘以x-2, 得2-x+m=2x-4, 合并同类项,得3x=6+m, m=3x-6. 该分式方程有增根, x=2, m=0.,课堂小结,分式 方程的解法,注意,(1)去分母时,原方程的整式部分漏乘,步骤 (去分母法),一化(分式方程转化为整式方程); 二解(整式方程); 三检验(代入最简公分母看
9、是否为零),(2)约去分母后,分子是多项式时,没有添括号(因分数线有括号的作用),(3)忘记检验,“部编本”语文教材解读 “部编本”语文教材的编写背景。 (一)教材要体现国家意识、主流意识形态、党的认同,体现立德树人从娃娃抓起。 (二)体现核心素养,中国学生发展核心素养包括社会责任,国家认同、国际理解、人文底蕴、科学精神、审美情趣、学会学习、身心健康、实践创新。 (三)语文、道德与法制、历史三个学科教材统编是大趋势。 (四)“一标多本”教材质量参差不齐,“部编本”力图起到示范作用。 二、“部编本”教材的编写理念: (一)体现核心价值观,做到“整体规划,有机渗透”。 (二)接地气,满足一线需要,
10、对教学弊病起纠偏作用。提倡全民阅读,注重两个延伸:往课外阅读延伸,往语文生活延伸。 (三)加强了教材编写的科学性,编研结合。 (四)贴近当代学生生活,体现时代性。 “部编本”语文教材的七个创新点: (一)选文创新:课文总数减少,减少汉语拼音的难度。 (二)单元结构创新更加灵活的单元结构体制,综合性更强。 (三)重视语文核心素养,重建语文知识体系。 (四)三位一体,区分不同课型。“教读”、“自读”和“课外阅读”三位一体,整体提高学生的语文素养。 (五)把课外阅读纳入教材体制。 (六)识字写字教学更加讲究科学性。 (七)提高写作教学的效果。 新教材注重了六个意识。 、国家意识。 、目标意识。 、文体意识,非常突出文学素养的培养。 、读书意识。 、主体意识。 、科研意识。 小结:好教,但教好不易。,下课啦!,