浙江专用2020版高考数学大一轮复习 第九章平面解析几何 第9讲 曲线与方程练习(含解析)

上传人:可** 文档编号:107315 上传时间:2019-12-13 格式:DOCX 页数:9 大小:151.27KB
下载 相关 举报
浙江专用2020版高考数学大一轮复习 第九章平面解析几何 第9讲 曲线与方程练习(含解析)_第1页
第1页 / 共9页
浙江专用2020版高考数学大一轮复习 第九章平面解析几何 第9讲 曲线与方程练习(含解析)_第2页
第2页 / 共9页
浙江专用2020版高考数学大一轮复习 第九章平面解析几何 第9讲 曲线与方程练习(含解析)_第3页
第3页 / 共9页
浙江专用2020版高考数学大一轮复习 第九章平面解析几何 第9讲 曲线与方程练习(含解析)_第4页
第4页 / 共9页
浙江专用2020版高考数学大一轮复习 第九章平面解析几何 第9讲 曲线与方程练习(含解析)_第5页
第5页 / 共9页
点击查看更多>>
资源描述

1、第9讲 曲线与方程基础达标1方程(xy)2(xy1)20表示的曲线是()A一条直线和一条双曲线B两条双曲线C两个点D以上答案都不对解析:选C.(xy)2(xy1)20故或2到点F(0,4)的距离比到直线y5的距离小1的动点M的轨迹方程为()Ay16x2By16x2Cx216yDx216y解析:选C.由条件知:动点M到F(0,4)的距离与到直线y4的距离相等,所以点M的轨迹是以F(0,4)为焦点,直线y4为准线的抛物线,其标准方程为x216y.3(2019嘉兴模拟)已知点A(1,0),直线l:y2x4,点R是直线l上的一点,若,则点P的轨迹方程为()Ay2xBy2xCy2x8Dy2x4解析:选B

2、.设P(x,y),R(x1,y1),由知,点A是线段RP的中点,所以即因为点R(x1,y1)在直线y2x4上,所以y12x14,所以y2(2x)4,即y2x.4(2019绍兴一中高三期中)到两条互相垂直的异面直线距离相等的点的轨迹,被过一直线与另一直线垂直的平面所截,截得的曲线为()A相交直线B双曲线C抛物线D椭圆弧解析:选C.如图所示,建立坐标系,不妨设两条互相垂直的异面直线为OA,BC,设OBa,P(x,y,z)到直线OA,BC的距离相等,所以x2z2(xa)2y2,所以2axy2z2a20,若被平面xOy所截,则z0,y22axa2;若被平面xOz所截,则y0,z22axa2,故选C.5

3、设点A为圆(x1)2y21上的动点,PA是圆的切线,且|PA|1,则P点的轨迹方程为()Ay22xB(x1)2y24Cy22xD(x1)2y22解析:选D.如图,设P(x,y),圆心为M(1,0)连接MA,PM,则MAPA,且|MA|1,又因为|PA|1,所以|PM|,即|PM|22,所以(x1)2y22.6若曲线C上存在点M,使M到平面内两点A(5,0),B(5,0),距离之差的绝对值为8,则称曲线C为“好曲线”以下曲线不是“好曲线”的是()Axy5Bx2y29C1Dx216y解析:选B.因为M到平面内两点A(5,0),B(5,0)距离之差的绝对值为8,所以M的轨迹是以A(5,0),B(5,

4、0)为焦点的双曲线,方程为1.A项,直线xy5过点(5,0),满足题意,为“好曲线”;B项,x2y29的圆心为(0,0),半径为3,与M的轨迹没有交点,不满足题意;C项,1的右顶点为(5,0),满足题意,为“好曲线”;D项,方程代入1,可得y1,即y29y90,所以0,满足题意,为“好曲线”7在平面直角坐标系中,O为坐标原点,A(1,0),B(2,2),若点C满足t(),其中tR,则点C的轨迹方程是_解析:设C(x,y),则(x,y),t()(1t,2t),所以消去参数t得点C的轨迹方程为y2x2.答案:y2x28已知M(2,0),N(2,0),则以MN为斜边的直角三角形的直角顶点P的轨迹方程

5、是_解析:设P(x,y),因为MPN为直角三角形,所以|MP|2|NP|2|MN|2,所以(x2)2y2(x2)2y216,整理得,x2y24.因为M,N,P不共线,所以x2,所以轨迹方程为x2y24(x2)答案:x2y24(x2)9已知点P是圆C:(x2)2y24上的动点,定点F(2,0),线段PF的垂直平分线与直线CP的交点为Q,则点Q(x,y)的轨迹方程是_解析:依题意有|QP|QF|,则|QC|QF|CP|2,又|CF|42,故点Q的轨迹是以C、F为焦点的双曲线,a1,c2,得b23,所求轨迹方程为x21.答案:x2110(2019杭州高级中学模拟)已知P是椭圆1(ab0)上的任意一点

6、,F1、F2是它的两个焦点,O为坐标原点,则动点Q的轨迹方程是_解析:,如图,22,设Q(x,y),则(x,y),即P点坐标为,又P在椭圆上,则有1,即1.答案:111设F(1,0),M点在x轴上,P点在y轴上,且2,当点P在y轴上运动时,求点N的轨迹方程解:设M(x0,0),P(0,y0),N(x,y),因为,(x0,y0),(1,y0),所以(x0,y0)(1,y0)0,所以x0y0.由2得(xx0,y)2(x0,y0),所以即所以x0,即y24x.故所求的点N的轨迹方程是y24x.12已知P为圆A:(x1)2y28上的动点,点B(1,0)线段PB的垂直平分线与半径PA相交于点M,记点M的

7、轨迹为.(1)求曲线的方程;(2)当点P在第一象限,且cosBAP时,求点M的坐标解:(1)圆A的圆心为A(1,0),半径等于2.由已知|MB|MP|,于是|MA|MB|MA|MP|22|AB|,故曲线是以A,B为焦点,以2为长轴长的椭圆,即a,c1,b1,所以曲线的方程为y21.(2)由cosBAP,|AP|2,得P.于是直线AP的方程为y(x1)由整理得5x22x70,解得x11,x2.由于点M在线段AP上,所以点M坐标为.能力提升1已知log2x,log2y,2成等差数列,则在平面直角坐标系中,点M(x,y)的轨迹为()解析:选A.由2log2y2log2x得log2y2log2(4x)

8、,故点M(x,y)的轨迹方程为y24x(x0,y0),即y2(x0),故选A.2在平面直角坐标系xOy中,点B与点A(1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于,则动点P的轨迹方程为()Ax23y24Bx23y24Cx23y24(x1)Dx23y24(x1)解析:选D.由点B与点A(1,1)关于原点对称,得点B的坐标为(1,1)设点P的坐标为(x,y),由题意得kAPkBP(x1),化简得x23y24,且x1.故动点P的轨迹方程为x23y24(x1)3已知点A,B分别是射线l1:yx(x0),l2:yx(x0)上的动点,O为坐标原点,且OAB的面积为定值2,则线段AB中点

9、M的轨迹方程为_解析:由题意可设A(x1,x1),B(x2,x2),M(x,y),其中x10,x20,则因为OAB的面积为定值2,所以SOABOAOB(x1)(x2)x1x22.22得x2y2x1x2,而x1x22,所以x2y22.由于x10,x20,所以x0,即所求点M的轨迹方程为x2y22(x0)答案:x2y22(x0)4曲线C是平面内与两个定点F1(1,0)和F2(1,0)的距离的积等于常数a2(a1)的点的轨迹给出下列三个结论:曲线C过坐标原点;曲线C关于坐标原点对称;若点P在曲线C上,则F1PF2的面积不大于a2.其中,所有正确结论的序号是_解析:因为原点O到两个定点F1(1,0),

10、F2(1,0)的距离的积是1,而a21,所以曲线C不过原点,即错误;因为F1(1,0),F2(1,0)关于原点对称,设M是曲线C上任意一点,所以|MF1|MF2|a2对应的轨迹关于原点对称,即正确;因为SF1PF2|PF1|PF2|sinF1PF2|PF1|PF2|a2,即F1PF2的面积不大于a2,所以正确答案:5已知坐标平面上动点M(x,y)与两个定点P(26,1),Q(2,1),且|MP|5|MQ|.(1)求点M的轨迹方程,并说明轨迹是什么图形;(2)记(1)中轨迹为C,过点N(2,3)的直线l被C所截得的线段长度为8,求直线l的方程解:(1)由题意,得5,即5,化简,得x2y22x2y

11、230,所以点M的轨迹方程是(x1)2(y1)225.轨迹是以(1,1)为圆心,以5为半径的圆(2)当直线l的斜率不存在时,l:x2,此时所截得的线段长度为28,所以l:x2符合题意当直线l的斜率存在时,设l的方程为y3k(x2),即kxy2k30,圆心(1,1)到直线l的距离d,由题意,得4252,解得k.所以直线l的方程为xy0,即5x12y460.综上,直线l的方程为x2或5x12y460.6(2019温州市普通高中模考)如图,P为圆M:(x)2y224上的动点,定点Q(,0),线段PQ的垂直平分线交线段MP于点N.(1)求动点N的轨迹方程;(2)记动点N的轨迹为曲线C,设圆O:x2y2

12、2的切线l交曲线C于A,B两点,求|OA|OB|的最大值解:(1)连接QN,因为|NM|NQ|NM|NP|MP|22|MQ|,所以动点N的轨迹为椭圆,所以a,c,所以b23.所以动点N的轨迹方程为1.(2)当切线l垂直坐标轴时,|OA|OB|4.当切线l不垂直坐标轴时,设切线l的方程为ykxm(k0),点A(x1,y1),B(x2,y2),由直线和圆相切,得m222k2.由得(2k21)x24kmx2m260,所以x1x2,x1x2,所以x1x2y1y2x1x2(kx1m)(kx2m)(k21)x1x2km(x1x2)m2(k21)kmm20,所以AOB90,所以|OA|OB|AB|,又因为|AB|x1x2|,令tk2,则|AB|223,当且仅当k时,等号成立,所以|OA|OB|3,综上,|OA|OB|的最大值为3.9

展开阅读全文
相关资源
  • 浙江专用2020版高考数学大一轮复习 第八章立体几何与空间向量 第2讲 空间几何体的表面积与体积练习(含解析)浙江专用2020版高考数学大一轮复习 第八章立体几何与空间向量 第2讲 空间几何体的表面积与体积练习(含解析)
  • 浙江专用2020版高考数学大一轮复习 第八章立体几何与空间向量 第6讲 空间向量的运算及应用练习(含解析)浙江专用2020版高考数学大一轮复习 第八章立体几何与空间向量 第6讲 空间向量的运算及应用练习(含解析)
  • 浙江专用2020版高考数学大一轮复习 第八章立体几何与空间向量 第3讲 空间点直线平面之间的位置关系练习(含解析)浙江专用2020版高考数学大一轮复习 第八章立体几何与空间向量 第3讲 空间点直线平面之间的位置关系练习(含解析)
  • 浙江专用2020版高考数学大一轮复习 第八章立体几何与空间向量 第7讲 立体几何中的向量方法 第2课时空间距离与立体几何中的最值范围问题选用练习(含解析)浙江专用2020版高考数学大一轮复习 第八章立体几何与空间向量 第7讲 立体几何中的向量方法 第2课时空间距离与立体几何中的最值范围问题选用练习(含解析)
  • 浙江专用2020版高考数学大一轮复习 第二章函数概念与基本初等函数 第1讲 函数及其表示练习(含解析)浙江专用2020版高考数学大一轮复习 第二章函数概念与基本初等函数 第1讲 函数及其表示练习(含解析)
  • 浙江专用2020版高考数学大一轮复习 第八章立体几何与空间向量 第7讲 立体几何中的向量方法 第1课时空间角练习(含解析)浙江专用2020版高考数学大一轮复习 第八章立体几何与空间向量 第7讲 立体几何中的向量方法 第1课时空间角练习(含解析)
  • 浙江专用2020版高考数学大一轮复习 第二章函数概念与基本初等函数 第4讲 二次函数与幂函数练习(含解析)浙江专用2020版高考数学大一轮复习 第二章函数概念与基本初等函数 第4讲 二次函数与幂函数练习(含解析)
  • 浙江专用2020版高考数学大一轮复习 第二章函数概念与基本初等函数 第2讲 函数的单调性与最值练习(含解析)浙江专用2020版高考数学大一轮复习 第二章函数概念与基本初等函数 第2讲 函数的单调性与最值练习(含解析)
  • 浙江专用2020版高考数学大一轮复习 第二章函数概念与基本初等函数 第3讲 函数的奇偶性对称性练习(含解析)浙江专用2020版高考数学大一轮复习 第二章函数概念与基本初等函数 第3讲 函数的奇偶性对称性练习(含解析)
  • 浙江专用2020版高考数学大一轮复习 第九章平面解析几何 第4讲 直线与圆圆与圆的位置关系练习(含解析)浙江专用2020版高考数学大一轮复习 第九章平面解析几何 第4讲 直线与圆圆与圆的位置关系练习(含解析)
  • 相关搜索
    资源标签

    当前位置:首页 > 高中 > 高中数学 > 数学高考 > 一轮复习