浙教版数学八年级下册4.1多边形ppt课件1

6.4 多边形的内角和与外角和(1),多边形的内角和,1.了解多边形的概念,经历探究多边形内角和公式的过程,进一步发展合情推理能力 2.会用多边形内角和公式解决相应的实际问题,重点:探究多边形内角和公式 难点:综合运用多边形内角和公式,在同一平面内,由不在同一条直线上的三条线段首尾顺次连接而成的图形

浙教版数学八年级下册4.1多边形ppt课件1Tag内容描述:

1、6.4 多边形的内角和与外角和(1),多边形的内角和,1.了解多边形的概念,经历探究多边形内角和公式的过程,进一步发展合情推理能力 2.会用多边形内角和公式解决相应的实际问题,重点:探究多边形内角和公式 难点:综合运用多边形内角和公式,在同一平面内,由不在同一条直线上的三条线段首尾顺次连接而成的图形,什么是三角形:,四边形呢:,五边形呢:,探究一,多边形的定义:,在同一平面内,由不在同一条直线上的一些线段首尾顺次连接而成的图形,探究一,四边形,五边形,六边形,多边形的相关概念:,对角线:连接多边形不相邻的两个顶点的线段,请。

2、,导入新课,讲授新课,当堂练习,课堂小结,22.7 多边形的内角和与外角,第二十二章 四边形,情境引入,学习目标,1.掌握多边形的定义及有关概念,能区分凹凸多边形. 2.会求多边形的对角线的条数.(难点) 3.能通过不同方法探索多边形的内角和与外角和公式. (重点、难点) 4.掌握正多边形的概念及内角的计算.(重点) 5.了解四边形的不稳定性.,导入新课,情景引入,在实际生活当中,除了三角形,还有许多由线段围成的图形.观察图片,你能找到由一些线段围成的图形吗?,中国第一奇村诸葛八卦村,美国国防部大楼五角大楼,讲授新课,问题2 观察画某多边。

3、11.3.2 多边形的内角和,第十一章 三角形,导入新课,讲授新课,当堂练习,课堂小结,11.3 多边形及其内角和,八年级数学上(RJ)教学课件,情境引入,1.能通过不同方法探索多边形的内角和与外角和公式. (重点) 2.学会运用多边形的内角和与外角和公式解决问题. (难点),法国的建筑事务所atelierd将协调坚固的蜂窝与人类天马行空的想象力结合,创造了这个“abeilles bee pavilion”.,导入新课,情景引入,思考:你知道正六边形的内角和是多少吗?,问题2 你知道长方形和正方形的内角和是多少 度?,问题1 三角形内角和是多少度?,三角形内角和 是180.。

4、11.3.1 多边形,第十一章 三角形,导入新课,讲授新课,当堂练习,课堂小结,11.3 多边形及其内角和,情境引入,1.掌握多边形的定义及有关概念,能区分凹凸多边形. 2.掌握正多边形的概念.(重点) 3.会求多边形的对角线的条数.(难点),导入新课,情景引入,在实际生活当中,除了三角形,还有许多由线段围成的图形.观察图片,你能找到由一些线段围成的图形吗?,中国第一奇村诸葛八卦村,美国国防部大楼五角大楼,视频:水立方外观美景欣赏,讲授新课,问题2 观察画某多边形的过程,类比三角形的概念,你能说出什么是多边形吗?,在平面内,由一些线段首尾。

5、第19章 四边形,导入新课,讲授新课,当堂练习,课堂小结,19.1 多边形内角和,情境引入,学习目标,1.掌握多边形的定义及有关概念,能区分凹凸多边形. 2.会求多边形的对角线的条数.(难点) 3.能通过不同方法探索多边形的内角和与外角和公式. (重点、难点) 4.掌握正多边形的概念及内角的计算.(重点) 5.了解四边形的不稳定性.,导入新课,情景引入,在实际生活当中,除了三角形,还有许多由线段围成的图形.观察图片,你能找到由一些线段围成的图形吗?,中国第一奇村诸葛八卦村,美国国防部大楼五角大楼,讲授新课,问题2 观察画某多边形的过程,类比。

6、1课时作业(九)2.1 第 1 课时 多边形的内角和 一、选择题1从一个七边形的某个顶点出发,分别连接这个点与其余各顶点,可以把这个七边形分割成的三角形的个数为( )A6 B5 C8 D72正八边形的每一个内角的度数为( )链 接 听 课 例 2归 纳 总 结A120 B135 C140 D1443多边形的边数由 7 增加到 8,它的内角和增加( )A360 B270 C180 D9042017苏州如图 K91,在正五边形 ABCDE 中,连接 BE,则ABE 的度数为( )图 K91A30 B36 C54 D7252017宜昌如图 K92,将一张四边形纸片沿直线剪开,如果剪开后的两个图形的内角和相等,那么图 K92 四种剪法中,符合要。

7、第2章 四边形,2.1 多边形,第1课时 多边形的内角和,目标突破,总结反思,第2章 四边形,知识目标,2.1 多边形,知识目标,1通过类比三角形的边、角,能识别多边形、多边形的顶点、边、内角、对角线及正多边形等概念 2利用对角线的分割,探究出多边形的内角和公式,并能应用其公式去解决内角和及求多边形的边数等问题,目标突破,目标一 能认识多边形,例1 教材补充例题 已知正n边形的周长为60,边长为a. (1)当n3时,请直接写出a的值; (2)把正n边形的周长与边数同时增加7后,假设得到的仍是正多边形,它的边数为n7,周长为67,边长为b.有人分别取n等。

8、课前准备,同学们,课本、练习本、笔,你准备好了吗?,第4章 平行四边形 4.1 多边形(1),想一想,比一比,你能根据三角形的定义类比出多边形的定义吗?,由不在同一条直线上的三条线段首尾顺次相接形成的图形叫三角形,在同一平面内,由不在同一条直线上的若干条线段(线段的条数不小于3)首尾顺次相接形成的图形,叫做多边形组成多边形的各条线段叫做多边形的边.,边数为3的多边形叫三角形,边数为4的多边形叫四边形.类似地,边数为5的多边形叫五边形边数为n的多边形叫n边形.,以四边形为例,了解构成多边形的元素,顶点,内角,边,对角线,外角,构。

9、课前准备,同学们,课本、练习本、笔,你准备好了吗?,第4章 平行四边形 4.1 多边形(1),想一想,比一比,你能根据三角形的定义类比出多边形的定义吗?,由不在同一条直线上的三条线段首尾顺次相接形成的图形叫三角形,在同一平面内,由不在同一条直线上的若干条线段(线段的条数不小于3)首尾顺次相接形成的图形,叫做多边形组成多边形的各条线段叫做多边形的边.,边数为3的多边形叫三角形,边数为4的多边形叫四边形.类似地,边数为5的多边形叫五边形边数为n的多边形叫n边形.,以四边形为例,了解构成多边形的元素,顶点,内角,边,对角线,外角,构。

10、有没有五边形?,你知道为什么吗?,你能从这幅图中找出哪些平面图形?,有你熟悉的图形吗?,5.1多边形(1),重要的数学思维方法,三角形,由不在同一条直线上的三条线段首尾顺次相接所形成的图形叫三角形 。,三角形的概念:,四边形,四边形概念:,由不在同一条直线上的四条线段首尾顺次相接所形成的图形叫做四边形 。,在同一平面里,,凸四边形,凹四边形,四边形的各条边都在任意一条边所在直线的同一侧,四边形的各条边不都在任意一条边所在直线的同一侧,温馨提示:我们现在所学的是凸边形。,温故而知新,边,内角,顶点,外角,A,B,D,C,边,内角(角)。

11、5.1多边形(2),四边形的内角和是多少度?怎样得到的?,四边形的外角和是多少度?,四边形的内角和是360度,通过画对角线把四边形问题化归为三角形问题来解决。,四边形的外角和是360度,温故知新,我们知道 边数为3的多边形叫三角形,边数为4的多边形叫四边形.学.科.网zxxk.组卷网,请你欣赏,六角螺帽,依此类推,边数为5的多边形叫五边形,边数为n的多边形叫n边形.(n为大于或等于3的正整数),多边形的定义:,在同一平面内,由不在同一条直线上的一些线段首尾顺次相接所组成的(封闭)图形。,对角线:,连结多边形不相邻的两个顶点的线段,叫做多边形。

12、5.1,多 边 形,数学(浙)八年级下册 第五章 平行四边形,(3),新知识,正三角形,正方形,正六边形,正五边形,正七边形,正八边形,正多边形,:各边相等、各内角也相等的多边形.学.科.网zxxk.组卷网,做一做,正六边形,正五边形,正七边形,正八边形, 求正五边形、正六边形、正七边形的各个内角度数, 正五边形、正七边形、正七八边形都是轴对称图形吗?各有几条对称轴?, 由于正多边形有许多优良的性质,匀称美观,常被人们用于图案设计和镶嵌平面.学.科.网zxxk.,用一些形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙,不重叠地。

13、4.1 多边形(2)A 练就好基础 基础达标1一个多边形的内角和与外角和相等,则这个多边形是( A )A四边形 B五边形C六边形 D八边形2十边形的内角和为( B )A1260 B1440C1620 D18003下面哪一个度数是某个多边形的内角和( C )A270 B630C720 D1920 4若一个多边形的内角和为 1080,则这个多边形的边数为( C )A6 B7C8 D95过某个多边形一顶点的所有对角线,将这个多边形分成了 5 个三角形,则这个多边形是( C )A五边形 B六边形C七边形 D八边形6从多边形一个顶点出发共可画 3 条对角线,这个多边形是_六_边形7若两个多边形的边数之比是 12,内角和度数之。

14、5.1 多 边 形(1),由这些图片你抽象出什么几何图形?,大家说说怎样的图形是四边形?,四边形定义:在同一平面内,不在同一条直线上的四条线段首尾顺次相接形成的图形。,凸四边形,凹四边形,温馨提示:我们现在所学的是凸多边形,即多边形的各边都在任意一条边所在直线的同一侧。,合作学习,在一张纸上任意画一个四边形,剪下它的四个角, 把它们拼在一起(四个角的顶点重合).你发现了什么? 其他同学与你的发现相同吗?,一般地,四边形有以下的定理:四边形的内角和等于3600.学.科.网zxxk.组卷网,你能把你的发现概括成一个命题吗?,已知:四边形ABCD。

15、第 4 章 平行四边形4.1 多边形(1)A 练就好基础 基础达标)1已知一个多边形有两条对角线,那么这个多边形是( A )A四边形 B五边形C六边形 D七边形2在四边形 ABCD 中,ABC D1245,则C 等于( C )A60 B100 C120 D1503在四边形 ABCD 中,AC 160,B 比D 大 60,则B 为( D )A70 B80 C120 D1304在四边形的内角中,直角最多可以有( D )A1 个 B2 个C3 个 D4 个5以线段 a7,b8,c9,d11 为边作四边形,可作( D )A1 个 B2 个C3 个 D无数个 62017宜昌如图所示,将一张四边形纸片沿直线剪开,如果剪开后的两个图形的内角和相等,下列四种剪法中,符合要求。

16、多边形的内角和与外角和教案教学目标知识与技能1了解多边形的概念;2掌握多边形的外角和及内角和公式;3通过把多边形转化为三角形,体会转化思想在几何中的运,让学生体会从特殊到一般的认识问题的方法过程与方法1让学生经历猜想、探索、推理、归纳等过程发展学生的合情推理能力和语言表达能力,掌握复杂问题化为简单问题,化未知为已知的思想方法2通过探索多边形的内角和与外角和,让学生尝试从不同的角度寻求解决问题的方法,并能有效地解决问题情感、态度与价值观通过学生间交流、探索、进一步激发学生的学习热情和求知欲望,养成良好。

17、4.1 多边形(2),仔细思考,并请填写下表:,2,3,3,4,3180,4180,合作学习,1,2,2180,n边形的内角和为(n2)180(n3),你从表中得到了什么结论?,任何多边形的外角和等于360,n边形的外角和,2.十边形的内角和是多少?外角和呢?,1.铺地板的六角砖内角和是多少度?,3.n边形内角和是1800 ,则n=?,看谁答得快,4.n边形的每个内角都等于120,则n=?,5.n边形的每个外角都等于72,则n=?,6.在五边形ABCDE中,若A=D=90o,且 B:C:E=3:2:4,则C的度数为_,720,1440,360,12,6,5,80,B1,B2,B3,B4,B5,A1,A2,A3,A4,A5,一个五角星图案如图,已知五边形A1A2A3A4A5的各个内。

18、4.1多边形(2),四边形的内角和是多少度?怎样得到的?,四边形的外角和是多少度?,四边形的内角和是360度,通过画对角线把四边形问题化归为三角形问题来解决。,四边形的外角和是360度,温故知新,我们知道 边数为3的多边形叫三角形,边数为4的多边形叫四边形.,请你欣赏,六角螺帽,依此类推,边数为5的多边形叫五边形,边数为n的多边形叫n边形.(n为大于或等于3的正整数),多边形的定义:,在同一平面内,由不在同一条直线上的一些线段首尾顺次相接所组成的(封闭)图形。,对角线:,连结多边形不相邻的两个顶点的线段,叫做多边形的对角线。,请画出下。

19、,只凭风力健, 不加羽毛丰。 红线凌空去, 清云有路通。,猜谜语,猜一活动名称,周末老师去商店看到了几个风筝,请你说说它们类似于哪些几何图形?,4.1 多边形(1),记作 ,记作 四边形ABCD四边形ADCB,由不在同一条直线上的三条线段首尾顺次相接形成的图形叫三角形,由不在同一条直线上的四条线段首尾顺次相接形成的图形,叫做四边形.,在同一平面内,,类比思想,凸四边形,凹四边形, 我们现在所学的都是凸多边形,即多边形 的各边都在任意一条边所在直线的同一侧,请画出一个四边形,并用正确的方法表示,(1),(2),探索 1:四边形的内角和,拼一。

20、4.1多边形(1),由上述这些图形,你能 抽象出什么几何图形?,三角形,四边形,六边形,八边形,生 活 中 的 四 边 形,想一想,比一比,四边形,由不在同一条直线上的三条线段首尾顺次相接形成的图形叫三角形,四边形,三角形,由不在同一条直线上的四条线段首尾顺次相接 形成的图形,叫做四边形(quadrilateral),定义,凸四边形,凹四边形,注:本套教科书所说的四边形等多边形,都指凸多边形,即多边形的各条边都在任意一条边所在直线的同一侧,四边形的各条边都在任意 一条边所在直线的同一侧,四边形的各条边不都在任意一条边所在直线的同一侧,凸四边。

【浙教版数学八年级下册4.1多】相关PPT文档
浙教版八年级数学下册5.1 多边形(4)课件
浙教版八年级数学下册5.1 多边形(2)课件
浙教版八年级数学下册5.1 多边形(3)课件
浙教版八年级数学下册5.1 多边形(1)课件
【浙教版数学八年级下册4.1多】相关DOC文档
标签 > 浙教版数学八年级下册4.1多边形ppt课件1[编号:172326]