章末复习学习目标1.掌握复数的有关概念及复数相等的充要条件.2.理解复数的几何意义.3.掌握复数的相关运算1复数的有关概念(1)复数的概念:形如abi(a,bR)的数叫作复数,其中a,b分别是它的实部和虚部若b0,则abi为实数,若b0,则abi为虚数,若a0且b0,则abi为纯虚数(2)复数相等:
章末复习学案含答案Tag内容描述:
1、第三章 数系的扩充与复数 章末复习 学习目标1.巩固复数的概念和几何意义.2.理解并能进行复数的四则运算且认识复数加减法的几何意义 1复数的有关概念 (1)复数的概念 形如abi(a,bR)的数叫做复数,其中a,b分别是它的实部和虚部若b0,则abi为实数,若b0,则abi为虚数,若a0且b0,则abi为纯虚数 (2)复数相等:abicdiac且bd(a,b,c,dR) (3)共轭复数:abi与c。
2、第一章 导数及其应用 章末复习 学习目标1.理解导数的几何意义,并能解决有关斜率、切线方程等问题.2.掌握初等函数的求导公式.3.熟练掌握利用导数判断函数单调性,会用导数求函数的极值与最值.4.掌握微积分基本定理,能利用定积分求不规则图形的面积 1函数yf(x)在点x0处的导数 (1)定义式:f(x0). (2)几何意义:曲线在点(x0,f(x0)处切线的斜率 2基本初等函数的导数公式 yf(x。
3、第二章第二章 推理与证明推理与证明 章末复习章末复习 学习目标 1.理解合情推理与演绎推理的区别与联系,会利用归纳与类比推理进行简单的 推理.2.加深对直接证明和间接证明的认识, 会应用其解决一些简单的问题.3.进一步掌握数学 归纳法的实质与步骤,掌握用数学归纳法证明等式与不等式问题 1合情推理 (1)归纳推理:由部分到整体、由个别到一般的推理 (2)类比推理:由特殊到特殊的推理 (3)合情推理。
4、章末复习学习目标1.掌握复数的有关概念及复数相等的充要条件.2.理解复数的几何意义.3.掌握复数的相关运算1复数的有关概念(1)复数的概念:形如abi(a,bR)的数叫作复数,其中a,b分别是它的实部和虚部若b0,则abi为实数,若b0,则abi为虚数,若a0且b0,则abi为纯虚数(2)复数相等:abicdiac且bd(a,b,c,dR)(3)共轭复数:abi与cdi共轭ac,bd0(a,b,c,dR)(4)复平面:建立直角坐标系来表示复数的平面叫作复平面x轴叫作实轴,y轴叫作虚轴实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数;各象限内的点都表示非纯虚数(5)复数的模:。
5、章末复习学习目标1.梳理构建本章知识网络.2.进一步熟练掌握用导数研究函数性质的方法.3.能求函数的单调区间、极值及最值.4.进一步体会导数的应用1函数的单调性与其导数的关系定义在区间(a,b)内的函数yf(x)f(x)的正负f(x)的单调性f(x)0在这个区间内,函数yf(x)是增加的f(x)0在这个区间内,函数yf(x)是减少的2.求函数yf(x)的极值的方法(1)求出导数f(x);(2)解方程f(x)0,(3)对于方程f(x)0的每一个解x0,分析f(x)在x0左、右两侧的符号(即f(x)的单调性),确定极值点若f(x)在x0两侧的符号“左正右负”,则x0为极大值点若f(x)在x0两侧的符号“。
6、章末复习学习目标1.梳理构建定积分的知识网络.2.进一步理解定积分的概念及性质,能熟练应用微积分基本定理求定积分1曲边梯形(1)由直线xa,xb(ab),y0和曲线yf(x)所围成的平面图形称为曲边梯形,如图中阴影部分所示(2)求曲边梯形面积的一般步骤分割:将区间a,bn等分;计算:过剩估计值S1;不足估计值s1.近似代替:无论用S1还是用s1表示曲边梯形的面积,误差都不会超过S1s1.2定积分的概念一般地,给定一个在区间a,b上的函数yf(x),其图像如图所示将a,b区间分成n份,分点为:ax0x1x2xn1xnb.第i个小区间为xi1,xi,设其长度为xi,在这个小。
7、章末复习学习目标1.整合本章知识要点.2.进一步理解归纳推理与类比推理的概念、思维形式、应用等.3.进一步熟练掌握直接证明与间接证明.4.理解数学归纳法,并会用数学归纳法证明问题1归纳与类比(1)归纳推理:由部分到整体、由个别到一般的推理(2)类比推理:由特殊到特殊的推理(3)合情推理:合情推理是根据实验和实践的结果、个人的经验和直觉、已有的事实和正确的结论(定义、公理、定理等),推测出某些结果的推理方式2综合法和分析法(1)综合法是从已知条件推出结论的证明方法;(2)分析法是从结论追溯到条件的证明方法3反证法反证法的关键是。
8、章末复习学习目标1.梳理本章知识要点,构建知识网络.2.进一步理解导数的概念及其几何意义.3.能熟练应用公式及运算法则求导1导数的概念(1)函数在点x0处的导数f(x0),x是自变量x在x0附近的改变量,它可正、可负,但不可为零,f(x0)是一个常数(2)导函数f(x),f(x)为f(x)的导函数,不是一个常数2导数的几何意义(1)f(x0)是函数yf(x)在点(x0,f(x0)处切线的斜率,这是导数的几何意义(2)求切线方程常见的类型有两种:一是函数yf(x)“在点xx0处的切线方程”,这种类型中(x0,f(x0)是曲线上的点,其切线方程为yf(x0)f(x0)(xx0)二是函数yf(x)“过某。
9、章末复习学习目标1.整合本章知识要点.2.进一步理解归纳推理与类比推理的概念、思维形式、应用等.3.理解演绎推理.4.进一步熟练掌握直接证明与间接证明1归纳与类比(1)归纳推理:由部分到整体、由个别到一般的推理(2)类比推理:由特殊到特殊的推理(3)合情推理:合情推理是根据实验和实践的结果、个人的经验和直觉、已有的事实和正确的结论(定义、公理、定理等),推测出某些结果的推理方式2演绎推理(1)演绎推理:由一般到特殊的推理(2)“三段论”是演绎推理的一般模式,包括:大前提已知的一般原理;小前提所研究的特殊情况;结论根据一般原理。
10、章末复习学习目标1.掌握复数的有关概念及复数相等的充要条件.2.理解复数的几何意义.3.掌握复数的相关运算1复数的有关概念(1)复数的概念:形如abi(a,bR)的数叫作复数,其中a,b分别是它的实部和虚部若b0,则abi为实数,若b0,则abi为虚数,若a0且b0,则abi为纯虚数(2)复数相等:abicdiac且bd(a,b,c,dR)(3)共轭复数:abi与cdi共轭ac,bd0(a,b,c,dR)(4)复平面:建立直角坐标系来表示复数的平面叫作复平面x轴叫作实轴,y轴叫作虚轴实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数;各象限内的点都表示非纯虚数(5)复数的模:。
11、章末复习学习目标1.了解流程图及其画法.2.了解结构图及常见的结构图知识点一流程图流程图是由一些图形符号和文字说明构成的图示流程图常常用来表示一些动态过程,通常会有一个“起点”,一个或多个“终点”流程图可以直观、清楚地表示动态过程从开始到结束的全部步骤,在日常生活和工作的很多领域都得到了广泛应用例如,描述算法的程序框图、描述工业生产流程的工序流程图、描述去医院看病过程的诊病流程图等知识点二结构图1结构图是一种静态图示,是一种描述系统结构的图示结构图一般由构成系统的若干要素和表达各要素之间关系的连线(或。
12、章末复习学习目标1.会求线性回归方程,并用回归直线进行预报.2.理解独立性检验的基本思想及实施步骤一、线性回归分析1线性回归方程在线性回归方程yabx中,b,ab.其中xi,yi.2相关系数(1)相关系数r的计算公式r .(2)相关系数r的取值范围是1,1,|r|值越大,变量之间的线性相关程度越高(3)当r0时,b0,称两个变量正相关;当r0时,b0,称两个变量负相关;当r0时,称两个变量线性不相关二、条件概率1条件概率的概念设A,B为两个事件,已知B发生的条件下,A发生的概率,称为B发生时A发生的条件概率,记为P(A|B)2计算公式P(B|A).三、独立事件1独立。
13、章末复习1同角三角函数的基本关系sin2cos21,tan .2两角和与差的正弦、余弦、正切公式cos()cos cos sin sin .cos()cos cos sin sin .sin()sin cos cos sin .sin()sin cos cos sin .tan().tan().3二倍角公式sin 22sin cos .cos 2cos2sin22cos2112sin2.tan 2.4升幂公式1cos 22cos2.1cos 22sin2.5降幂公式cos2x,sin2x.6和差角正切公式变形tan tan tan()(1tan tan ),tan tan tan()(1tan tan )7辅助角公式yasin xbcos xsin(x).题。
14、章末复习1任意角三角函数的定义在平面直角坐标系中,设是一个任意角,它的终边与单位圆交于点P(x,y),那么:(1)y叫作的正弦,记作sin ,即sin y;(2)x叫作的余弦,记作cos ,即cos x;(3)叫作的正切,记作tan ,即tan (x0)2诱导公式诱导公式可以统一概括为“k(kZ)”的诱导公式当k为偶数时,函数名不改变;当k为奇数时,函数名改变,然后前面加一个把视为锐角时原函数值的符号记忆口诀为“奇变偶不变,符号看象限”3正弦函数、余弦函数和正切函数的性质函数ysin xycos xytan x图像定义域RRx|xR且xk,kZ值域1,11,1R对称性对称轴:xk(kZ);。
15、章末复习1向量的运算:设a(x1,y1),b(x2,y2).向量运算法则(或几何意义)坐标运算向量的线性运算加法ab(x1x2,y1y2)减法ab(x1x2,y1y2)数乘(1)|a|a|;(2)当0时,a的方向与a的方向相同;当0时,a的方向与a的方向相反;当0时,a0a(x1,y1)向量的数量积运算ab|a|b|cos (为a与b的夹角),规定0a0,数量积的几何意义是a的模与b在a方向上的射影的积abx1x2y1y22.两个定理(1)平面向量基本定理定理:如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,存在唯一一对实数1,2,使a1e12e2.基底:把不共线的向量e1,e2叫作表示这。
16、章末复习1.空间几何体的结构特征及其侧面积和体积名称定义图形侧面积体积多面体棱柱有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行S直棱柱侧ch,c为底面的周长,h为高VSh棱锥有一个面是多边形,其余各面都是有一个公共顶点的三角形S正棱锥侧ch,c为底面的周长,h为斜高VSh,h为高棱台用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分S正棱台侧(cc)h,c,c为底面的周长,h为斜高V(S上S下)h,h为高旋转体圆柱以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体S侧2rh,r为底面半。
17、章末复习课网络构建核心归纳1数列的概念及表示方法(1)定义:按某种规则依次排列的一列数(2)表示方法:列举法、列表法、图象法、通项公式法和递推公式法(3)分类:按项数有限还是无限分为有穷数列和无穷数列;按项与项之间的大小关系可分为递增数列、递减数列、摆动数列和常数列2求数列的通项(1)数列前n项和Sn与通项an的关系:an(2)当已知数列an中,满足an1anf(n),且f(1)f(2)f(n)可求,则可用累加法求数列的通项an,常利用恒等式ana1(a2a1)(a3a2)(anan1)(3)当已知数列an中,满足f(n),且f(1)f(2)f(n)可求,则可用累积法求数列的通项an,常。
18、章末复习课网络构建核心归纳1.三角形解的个数的确定已知两边和其中一边的对角不能唯一确定三角形,解这类三角形问题可能出现一解、两解、无解的情况,这时应结合“三角形中大边对大角”,此时一般用正弦定理,但也可用余弦定理.(1)利用正弦定理讨论:若已知a、b、A,由正弦定理,得sinB.若sinB1,无解;若sinB1,一解;若sinB1,两解.(2)利用余弦定理讨论:已知a、b、A.由余弦定理a2c2b22cbcosA,即c2(2bcosA)cb2a20,这是关于c的一元二次方程.若方程无解或无正数解,则三角形无解;若方程有唯一正数解,则三角形一解;若方程有两不同正数。
19、章末复习课网络构建核心归纳1.不等式的基本性质不等式的性质是不等式这一章内容的理论基础,是不等式的证明和解不等式的主要依据.因此,要熟练掌握和运用不等式的八条性质.2.一元二次不等式的求解方法(1)图象法:由一元二次方程、一元二次不等式及二次函数的关系,共同确定出解集.(2)代数法:将所给不等式化为一般式后借助分解因式或配方求解.当m0,则可得xn或x0(或0),无论B为正值还是负值,我们都可以把y项的系数。
20、章末复习课网络构建核心归纳1平面向量的基本概念主要应掌握向量的概念、零向量、单位向量、平行向量、相等向量、共线向量等概念,这些概念是考试的热点,一般都是以选择题或填空题形式出现,尤其是单位向量常与向量的平行与垂直的坐标形式结合考查,一些学生往往只求出一个而遗漏另一个2向量的线性运算主要应掌握向量加法的三角形法则与平行四边形法则,甚至推广到向量加法的多边形法则;掌握向量减法的三角形法则;数乘向量运算的性质和法则及运算律同时要灵活运用这些知识解决三点共线、两线段相等及两直线平行等问题3向量的坐标运算主。