六年级高斯学校竞赛应用题综合一含答案

第二十二 分数、百分数应用题综合提高 一、 基础知识回顾: 1. 比: (1)比的概念:两个数相除叫做两个数的比比例如,56 可记作 5:6 “:”是 比号,比号前面的数叫做比的前项前项,比号后面的数叫做比的后项后项,前项除以后项所 得的商叫做比值比值比的后项不能为 0 (2)比的性质:比的前项和后

六年级高斯学校竞赛应用题综合一含答案Tag内容描述:

1、第二十二 分数、百分数应用题综合提高 一、 基础知识回顾: 1. 比: (1)比的概念:两个数相除叫做两个数的比比例如,56 可记作 5:6 “:”是 比号,比号前面的数叫做比的前项前项,比号后面的数叫做比的后项后项,前项除以后项所 得的商叫做比值比值比的后项不能为 0 (2)比的性质:比的前项和后项都乘以或除以一个不为零的数,比值不变 2. 比例基本性质: 如果:a bc d,那么adbc 3. 正比例关系和反比例关系: (1)正比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种 量相对应的两个数的比值(也就是商)一定,这两。

2、第九讲 应用题综合练习 【学生注意】本讲练习满分 100 分,考试时间 70 分钟 一、填空题一、填空题(本题共有 8 小题,每题 6 分) 1. 语文测验,卡莉娅前三次的平均分是 77若想使平均分达到 80,她的第四次测验最少要得_ 分 2. 小高、萱萱、卡莉娅和墨莫四人一起折了 1200 只千纸鹤已知小高和萱萱两人共折了 600 只,小 高和卡莉娅两人共折了 400 只,小高和墨莫两人共折了 300 只,那么小高折了_只千纸鹤 3. 一个灰太狼玩具的进价是 20 元,售价是 50 元,结果没人来买于是店主决定打折出售,但希望利 润率不低于 25%,那么这个玩具最多。

3、第二十六讲 应用题综合 本讲知识点汇总: 与生活相关的形式多样的应用题,需要结合实际情况具体分析;条件比较隐晦,数 量关系较为复杂的应用题;具有不确定性,需要进行简单判断的应用题 具有多种可能情况,需要进行分类讨论的问题;需要进行合理安排对策,以达到最 佳效果的问题 例1 如图表格是 2013 年最新的整存整取的利率表: 李老师有 10000 元钱,他存入银行,整存两年后取出,到时本息一共有多少钱?假设李 老师存一年后, 将本息再存入, 两年后李老师有多少钱?哪种方式两年后得的钱多一些? 分析分析=利息 本金 年利率 时间,。

4、第 3 讲方程解应用题内容概述掌握一元一次方程的解法,多元一次方程组的解法,以及具有对称性的多元一次方程的特殊解法能从已知条件中寻找出等量关系,列出方程或方程组并求解。典型问题兴趣篇1. 解下列方程: ;521)(xx;6521(3)32在一次选举中,有甲、乙、丙三位候选人,乙的选票比甲的 2 倍还多 5 张,丙的选票比甲的一半还少 4 张如果甲、乙、丙三人的选票一共有 36 张,请问:甲得了多少张选票?3有若干名学生上体育课,体育老师规定每两人合用一个排球,每三人合用一个足球,每四人合用一个篮球,已知排球、足球、篮球共用了 26 个问。

5、第 2 讲比例解应用题内容概述涉及两个或多个量之闻比例的应用题熟练掌握比的转化和运算;对条件较多的应用题,学会通过列表的方法逐步分析求解;了解正比例与反比例的概念,掌握行程问题和工程问题中的正反比例关系典型问题兴趣篇1圆珠笔和铅笔的价格比是 4:3,20 支圆珠笔和 21 支铅笔共用 71.5 元问:圆珠笔的单价是每支多少元?2一段路程分为上坡和下坡两段,这两段的长度之比是 4:3已知阿奇在上坡时每小时走3 千米,下坡时每小时走 4.5 千米如果阿奇走完全程用了半小时请问:这段路程一共有多少千米?3加工一个零件,甲要 2 分钟,乙。

6、第 8 讲数论综合一内容概述运用已学过的数论知识,解决综合性较强的各类数论问题;学会利用简单代数式处理数论问题典型问题兴趣篇1如果某整数同时具备如下三条性质:这个数与 1 的差是质数;这个数除以 2 所得的商也是质数;这个数除以 9 所得的余数是 5那么我们称这个整数为“幸运数”,求出所有的两位幸运数2一个五位数 ,空格中的数未知,请问: 8(1)如果该数能被 72 整除,这个五位数是多少?(2)如果该数能被 55 整除,这个五位数是多少?3在小于 5000 的自然数中,能被 11 整除、并且所有数字之和为 13 的数共有多少个?4一个各位数。

7、第 7 讲几何综合一内容概述复杂的长度、角度计算;复杂的直线形比例关系;具有一定综合性的直线形计算问题典型问题兴趣篇1图 7-1 中八条边的长度正好分别是 1、2、3、4、5、6、7、8 厘米已知 a=2 厘米,b=4 厘米,c=5 厘米,求图形的面积2如图 7-2 所示,l+2+3+4+ 5+6 等于多少度?3如图 7-3,平行四边形 ABCD 的周长为 75 厘米,以 BC 为底时高是 14 厘米,以 CD 为底时高是 16 厘米求平行四边形 ABCD 的面积。4如图 7-4,一个边长为 1 米的正方形被分成 4 个小长方形,它们的面积分别是 平方米、103平方米、 平方米和 平方米已知图中的。

8、第 17 讲应用题综合二内容概述各种具有较强综合性的复杂应用题包含多种可能情况,需要进行分类讨论的问题;需要进行合理守排对策,以达到最佳效果的问题典型问题兴趣篇1有一批砖,每块砖的长和宽都是自然数,且长比宽长 12 厘米如图 17-1,若把这批砖横着铺,则可铺 897 厘米长;如图 17-2,若竖横相间铺,则可铺 657 厘米长,请问:如图 17-3这样铺,可铺多少厘米长?2一种商品的定价为整数元,100 元最多能买 3 件,甲、乙两人各带了若干张百元钞票,甲带的钱最多能买 7 件这种商品,乙带的钱最多能买 14 件,两人的钱凑在一起就能多买 。

9、第 13 讲应用题综合一内容概述与生话相关的形式多样的应用题,需要结合实际情况具体分析;条件比较隐藏,数量关系较为复杂的应用题;具有不确定性,需要进行简单判断的应用题典型问题兴趣篇1一个骗子到商店买了 5 元的东西,他付给店员 50 元钱,然后店员把剩下的钱找给了他;这时他又说自己有零钱,于是给店员 5 元的零钱,并且要回了开始给出的 50 元,请问:这个骗子一共骗了多少钱?2在水平地面上匀速行驶的拖拉机速度是每秒 5 米,已知拖拉机前轮直径 0.8 米,后轮直径1.25 米设某一时刻两轮上与地面的接触点为 A 和 B,那么经过多少。

【六年级高斯学校竞赛应用题】相关DOC文档
标签 > 六年级高斯学校竞赛应用题综合一含答案[编号:127655]