简单的三角恒等变换课后作业(含答案)

53简单的三角恒等变换基础过关1已知180360,则cos的值等于()AB.CD.答案C2使函数f(x第2课时简单的三角恒等变换题型一三角函数式的化简1化简:________.答案2cos解析原式2cos.2化简:________.答案cos2x第2课时简单的三角恒等变换题型一三角函数式的化简1化简

简单的三角恒等变换课后作业(含答案)Tag内容描述:

1、1已知 ,sin ,则 tan ( )(2,) 513 ( 4)A B717 177C D717 177【解析】因为 ,所以 cos ,所以 tan ,所以 tan (2,) 1213 512 ( 4)tan tan 41 tan tan 4 ,故选 C. 512 11 512 717【答案】C2ABC 的角 A,B ,C 所对的边分别是 a,b,c,若 cos A ,ca2,b3,则 a( )78A2 B. C3 D.52 72【解析】由余弦定理可知,a 2b 2c 22bccos Aa 29 (a2) 223(a2) a2,故选 A.78【答案】A3已知 ,tan ,那么 sin 2cos 2 的值为( )(4,2) (2 4) 17A B.15 75C D.75 34【答案】A4.在ABC 中,内角 A,。

2、【考向解读】 正弦定理和余弦定理以及解三角形问题是高考的必考内容,1.和差角公式、二倍角公式是高考的热点,常与三角函数式的求值、化简交汇命题既有选择题、填空题,又有解答题,难度适中,主要考查公式的灵活运用及三角恒等变换能力2.预测高考仍将以和差角公式及二倍角公式为主要考点,复习时应引起足够的重视3.边和角的计算;4.三角形形状的判断;5.面积的计算;6.有关的范围问题 【命题热点突破一】三角恒等变换例 1、 (2018 年全国 III 卷)若 ,则A . B. C. D. 【答案】B 【解析】 ,故答案为 B.【变式探究】 【2017 山东,文 7。

3、人教 A 版必修 4 第三章三角恒等变换检测题一、选择题1.在 中, ,则 ( )BC35sin,cos1BcosCA. 或 B. 或 C. D. 16566152.设 , , ,则 的大小关系是( 00sin4cos1a00sin1cosb62c,abc)A. B. C. D. bab3. 设函数 ( 为常实数)在区间 上的最小值为2cos3infxxa0,2,则 的值等于( )4aA. 4 B. -6 C. -3 D. -44.已知 ,若 的任意一条对称轴与 轴的交点横1sincos(,)4fxxRfxx坐标都不属于区间 ,则 的取值范围是( )2,3A. B. C. D. 3。

4、章末检测试卷章末检测试卷(三三) (时间:120 分钟 满分:150 分) 一、选择题(本大题共 12 小题,每小题 5 分,共 60 分) 1sin 80 cos 70 sin 10 sin 70 等于( ) A 3 2 B1 2 C. 1 2 D. 3 2 考点 两角和与差的余弦公式 题点 利用两角和与差的余弦公式化简求值 答案 C 解析 sin 80 cos 70 sin 10 sin 7。

5、章末检测(三)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若sin ,则cos 2()A. B. C. D.解析cos 212sin212.答案B2.函数f(x)sin xcos xcos 2x的振幅是()A. B. C.1 D.2解析f(x)sin 2xcos 2xsin,所以振幅A1.答案C3.若ABC的内角A满足sin 2A,则sin Acos A()A. B. C. D.解析sin 2A2sin Acos A0,cos A0.sin Acos A0,sin Acos A.答案A4.已知3sin xcos x2sin(x),其中(,),则实数的值是()A. B. C. D.解析因为3sin xcos x。

6、章末复习一、网络构建二、要点归纳1两角和与差的正弦、余弦、正切公式cos()cos cos sin sin .cos()cos cos sin sin .sin()sin cos cos sin .sin()sin cos cos sin .tan().tan().2二倍角公式sin 22sin cos .cos 2cos2sin22cos2112sin2.tan 2.3升幂公式1cos 22cos2.1cos 22sin2.4降幂公式sin xcos x,cos2x,sin2x.5和差角正切公式变形tan tan tan()(1tan tan ),tan tan tan()(1tan tan )6辅助角公式yasin xbcos xsin(x)7积化和差公式s。

7、章末检测试卷(三)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.sin 53cos 23cos 53sin 23等于()A. B.C. D.答案A解析原式sin(5323)sin 30.2.已知sin(45),则sin 2等于()A. B. C. D.答案B解析sin(45)(sin cos ),sin cos .两边平方,得1sin 2,sin 2.3.ysinsin 2x的一个单调递增区间是()A. B.C. D.答案B解析ysinsin 2xsin 2xcoscos 2xsinsin 2xsin 2xcos 2xsin.ysin的单调递增区间是ysin的单调递减区间,令2k2x2k,k。

8、微专题突破八三角恒等变换的几个技巧三角题是高考的热点,素以“小而活”著称.除了掌握基础知识之外,还要注意灵活运用几个常用的技巧.下面通过例题进行解析,希望对同学们有所帮助.一、灵活降幂例1 _.答案2解析2.点评常用的降幂技巧还有:因式分解降幂、用平方关系sin2cos21进行降幂:如cos4sin4(cos2sin2)22cos2sin21sin22等.二、化平方式例2 化简求值:.解因为,所以,所以cos 0,sin0,故原式sin.点评一般地,在化简求值时,遇到1cos 2,1cos 2,1sin 2,1sin 2常常化为平方式:2cos2,2sin2,(sin cos )2,(sin cos )2.三、灵活变角。

9、章末复习1.两角和与差的正弦、余弦、正切公式cos()cos cos sin sin .cos()cos cos sin sin .sin()sin cos cos sin .sin()sin cos cos sin .tan().tan().2.二倍角公式sin 22sin cos .cos 2cos2sin22cos2112sin2.tan 2.3.升幂公式1cos 22cos2.1cos 22sin2.4.降幂公式sin xcos x,cos2x.sin2x.5.和差角正切公式变形tan tan tan()(1tan tan ).tan tan tan()(1tan tan ).6.辅助角公式yasin xbcos xsin(x).题型一灵活变角的思想在三角恒等变换中的应用例1。

10、章末检测卷(三)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1(cossin)(cossin)等于()ABC.D.答案D解析(cossin)(cossin)cos2sin2cos.2函数ysincoscossin的图象的一条对称轴方程是()AxBxCxDx答案C解析ysinsincosx,当x时,y1.3已知sin(45),则sin2等于()ABC.D.答案B解析sin(45)(sincos),sincos.两边平方,得1sin2,sin2.4函数f(x)的最小正周期为()A. B. C D2答案C解析f(x)sin xcos xsin 2x,所以f(x)的最小正周期T.故选C.。

11、章末复习课网络构建核心归纳1本章的公式多不易记住,解决这个问题的最好办法就是掌握每个公式的推导过程:首先用向量方法推导出C(),再用代替C()中的得到C();接着用诱导公式sin()coscos得到S()与S();将S()除以C()得到T(),将S()除以C()得到T();将S()、C()、T()中的换为,得到S2、C2、T2.2熟练掌握常用的角的变换,是提高解题速度、提高分析问题和解决问题的能力的有效途径常用的角的变换有:2、422、2()()()()、2()()()()、()()、.这些变换技巧需要同学们在平时解题的过程中多多摸索,而探索的方法就是认真观察已知条件中的角与待求式。

12、回扣回扣 3 三角函数三角函数、三角恒等变换与解三角形三角恒等变换与解三角形 1.终边相同角的表示 所有与角 终边相同的角,连同角 在内,可构成一个集合 S|k 360 ,kZ,即 任一与角 终边相同的角,都可以表示成角 与整数个周角的和. 2.几种特殊位置的角的集合 (1)终边在 x 轴非负半轴上的角的集合:|k 360 ,kZ. (2)终边在 x 轴非正半轴上的角的集合:|180 k 360 ,kZ. (3)终边在 x 轴上的角的集合:|k 180 ,kZ. (4)终边在 y 轴上的角的集合:|90 k 180 ,kZ. (5)终边在坐标轴上的角的集合:|k 90 ,kZ. (6)终边在 yx 上的角的集合:|45。

13、3.2 简单的三角恒等变换,第三章 三角恒等变换,学习目标 1.能用二倍角公式导出半角公式,体会其中的三角恒等变换的基本思想方法. 2.了解三角恒等变换的特点、变换技巧,掌握三角恒等变换的基本思想方法. 3.能利用三角恒等变换对三角函数式化简、求值以及三角恒等式的证明和一些简单的应用.,题型探究,问题导学,内容索引,当堂训练,问题导学,思考1,知识点一 半角公式,我们知道倍角公式中,“倍角是相对的”,那么对余弦的二倍角公式,若用2替换,结果怎样?,答案,思考2,答案,思考3,答案,梳理,思考1,知识点二 辅助角公式,asin xbcos x化简的步。

14、 3.2 简单的三角恒等变换简单的三角恒等变换 一、选择题 1已知 cos 1 5, 3 2 ,2 ,则 sin 2等于( ) A. 10 5 B 10 5 C.2 6 5 D.2 5 5 考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值 答案 A 解析 3 2 ,2 , 2 3 4 , , sin 2 1cos 2 10 5 . 2设 是第二象限角,tan 4 3。

15、 3.2 简单的三角恒等变换简单的三角恒等变换 基础过关 1下列各式与 tan 相等的是( ) A 1cos 2 1cos 2 B sin 1cos C sin 1cos 2 D1cos 2 sin 2 解析 1cos 2 sin 2 2sin2 2sin cos sin cos tan 答案 D 2设 56,cos 2a,则 sin 4等于( ) A 1a 2 B 1a 2。

16、 3.2 简单的三角恒等变换简单的三角恒等变换 学习目标 1.能用二倍角公式导出半角公式,体会其中的三角恒等变换的基本思想方法. 2.了解三角恒等变换的特点、变换技巧,掌握三角恒等变换的基本思想方法.3.能利用三角恒 等变换对三角函数式化简、求值以及三角恒等式的证明和一些简单的应用 知识点一 半角公式 sin 2 1cos 2 , cos 2 1cos 2 , tan 2 1cos 1c。

17、53简单的三角恒等变换学习目标1.了解两角和与差的正弦、余弦公式导出积化和差、和差化积公式的基本方法理解方程思想、换元思想在整个变换过程中所起的作用.2.了解三角恒等变换的特点、变换技巧,掌握三角恒等变换的基本思想方法,能利用三角恒等变换对三角函数式化简、求值以及三角恒等式的证明和一些简单的应用知识链接1代数式变换与三角变换有什么不同?答代数式变换往往着眼于式子结构形式的变换对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒。

18、第2课时简单的三角恒等变换题型一三角函数式的化简1化简: .答案2cos 解析原式2cos .2化简: .答案cos 2x解析原式cos 2x.3化简:2cos()解原式.思维升华 (1)三角函数式的化简要遵循“三看”原则一看角,二看名,三看式子结构与特征(2)三角函数式的化简要注意观察条件中角之间的联系(和、差、倍、互余、互补等),寻找式子和三角函数公式之间的共同点题型二三角函数的求值命题点1给角求值与给值求值例1 (1)(2018阜新质检)2sin 50sin 10(1tan 10) .答案解析原式sin 80cos 102sin 50cos 10sin 10cos(60&#。

19、第2课时简单的三角恒等变换题型一三角函数式的化简1化简:_.答案2cos解析原式2cos .2化简:_.答案cos2x解析原式cos2x.3化简:2cos()解原式.思维升华 (1)三角函数式的化简要遵循“三看”原则:一看角,二看名,三看式子结构与特征(2)三角函数式的化简要注意观察条件中角之间的联系(和、差、倍、互余、互补等),寻找式子和三角函数公式之间的共同点题型二三角函数的求值命题点1给角求值与给值求值例1(1)2sin50sin10(1tan10)_.答案解析原式sin80cos102sin 50cos 10sin 10cos(6010)2sin(50。

20、53简单的三角恒等变换基础过关1已知180360,则cos的值等于()AB.CD.答案C2使函数f(x)sin(2x)cos(2x)为奇函数的的一个值是()A.B.C.D.答案D解析f(x)sin(2x)cos(2x)2sin.当时,f(x)2sin(2x)2sin2x为奇函数3函数f(x)sinxcosx(x,0)的单调递增区间是()A.B.C.D.答案D解析f(x)2sin,f(x)的单调递增区间为(kZ),因为x,0所以令k0得单调递增区间为.4sin70cos20sin10sin50的值为_答案解析sin70cos20sin10sin50(sin90sin50)(cos6。

【简单的三角恒等变换课后作】相关PPT文档
【简单的三角恒等变换课后作】相关DOC文档
3.2 简单的三角恒等变换 学案(含答案)
5.3 简单的三角恒等变换 学案(含答案)
标签 > 简单的三角恒等变换课后作业(含答案)[编号:25057]