专题突破一专题突破一 充分充分、必要条件的判断必要条件的判断 一、应用定义 例 1 (2018 浙江)已知平面 ,直线 m,n 满足 m,n,则“mn”是“m”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 考点 充分、必要条件的判断 题点 充分不必要条件的
高中数学专题05 充分条件与必要条件含答案解析Tag内容描述:
1、专题突破一专题突破一 充分充分、必要条件的判断必要条件的判断 一、应用定义 例 1 (2018 浙江)已知平面 ,直线 m,n 满足 m,n,则“mn”是“m”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 考点 充分、必要条件的判断 题点 充分不必要条件的判断 答案 A 解析 若 m,n,且 mn,则一定有 m, 但若 m,n,且 m,则 m 与 n 有可能异面, “mn”是“m”的充分不必要条件. 故选 A. 点评 利用定义法判断充分、必要条件应按如下步骤进行:分清条件与结论,即分清哪一 个是条件,哪一个是结论;判断推式的真假,。
2、第一章 集合与常用逻辑用语 1.41.4 充分条件与必要条件充分条件与必要条件 1.4.11.4.1 充分条件与必要条件充分条件与必要条件 1.4.21.4.2 充要条件充要条件 栏目导航栏目导航 栏目导航栏目导航 2 学 习 目 标 核 。
3、 2 充分条件与必要条件充分条件与必要条件 学习目标 1.理解充分条件、必要条件、充要条件的定义.2.会求某些简单问题成立的充分条 件、必要条件、充要条件.3.能够利用命题之间的关系判定充要关系或进行充要条件的证明. 知识点一 充分条件与必要条件 命题真假 “若 p, 则 q”是真命题 “若 p, 则 q”是假命题 推出关系 pq pq 条件关系 p 是 q 的充分条件 q 是 p 的必要条件 p 不是 q 的充分条件 q 不是 p 的必要条件 知识点二 充要条件 如果既有 pq,又有 qp,就记作 pq.此时,我们说,p 是 q 的充分必要条件,简称充要 条件. 特别提醒:。
4、1充分条件与必要条件一般地,“若p,则q”为真命题,是指由p通过推理可以得出q.这时,我们就说,由p可推出q,记作_,并且说p是q的充分条件,q是p的必要条件.如果“若p,则q”为假命题,那么由p推不出q,记作pq.此时,p不是q的充分条件,q不是p的必要条件.2充要条件 一般地,如果既有,又有,就记作_.此时,我们说,p是q的充分必要条件,简称充要条件.显然,如果p是q的充要条件,那么q也是p的充要条件. 概括地说,如果,那么p与q互为充要条件.注意:(1)判断p是q的什么条件,结果只有四种:充分不必要条件、必要不充分条件、充要条件、既。
5、1充分条件与必要条件一般地,“若p,则q”为真命题,是指由p通过推理可以得出q.这时,我们就说,由p可推出q,记作_,并且说p是q的充分条件,q是p的必要条件.如果“若p,则q”为假命题,那么由p推不出q,记作pq.此时,p不是q的充分条件,q不是p的必要条件.2充要条件 一般地,如果既有,又有,就记作_.此时,我们说,p是q的充分必要条件,简称充要条件.显然,如果p是q的充要条件,那么q也是p的充要条件. 概括地说,如果,那么p与q互为充要条件.注意:(1)判断p是q的什么条件,结果只有四种:充分不必要条件、必要不充分条件、充要条件、既。
6、高中数学专题07 充分条件与必要条件【母题来源】【2019年高考全国卷理数】设,为两个平面,则的充要条件是A内有无数条直线与平行 B内有两条相交直线与平行 C,平行于同一条直线 D,垂直于同一平面【答案】B【解析】由面面平行的判定定理知:内有两条相交直线都与平行是的充分条件;由面面平行的性质定理知,若,则内任意一条直线都与平行,所以内有两条相交直线都与平行是的必要条件.故的充要条件是内有两条相交直线与平行.故选B【名师点睛】面面平行的判定问题要紧扣面面平行的判定定理,最容易犯的错误为定理记不住,凭主观臆断.【命题。
7、高中数学专题05 充分条件与必要条件【母题来源一】【2019年高考浙江卷】若a0,b0,则“a+b4”是 “ab4”的A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件【答案】A【解析】当时,则当时,有,解得,充分性成立;当时,满足,但此时,必要性不成立,综上所述,“”是“”的充分不必要条件故选A【名师点睛】易出现的错误:一是基本不等式掌握不熟练,导致判断失误;二是不能灵活地应用“赋值法”,通过取的特殊值,从假设情况下推出合理结果或矛盾结果【母题来源二】【2018年高考浙江卷】已知平面,直线m,n满足m,n,。