2020高中数学专题09

1充分条件与必要条件 一般地,“若p,则q”为真命题,是指由p通过推理可以得出q.这时,我们就说,由p可推出q,记作_,并且说p是q的充分条件,q是p的必要条件. 如果“若p,则q”为假命题,那么由p推不出q,记作pq.此时,p不是q的充分条件,q不是p的必要条件. 2充要条件 一般地,如果既有,

2020高中数学专题09Tag内容描述:

1、1充分条件与必要条件一般地,“若p,则q”为真命题,是指由p通过推理可以得出q.这时,我们就说,由p可推出q,记作_,并且说p是q的充分条件,q是p的必要条件.如果“若p,则q”为假命题,那么由p推不出q,记作pq.此时,p不是q的充分条件,q不是p的必要条件.2充要条件 一般地,如果既有,又有,就记作_.此时,我们说,p是q的充分必要条件,简称充要条件.显然,如果p是q的充要条件,那么q也是p的充要条件. 概括地说,如果,那么p与q互为充要条件.注意:(1)判断p是q的什么条件,结果只有四种:充分不必要条件、必要不充分条件、充要条件、既。

2、1函数的最值与导数一般地,如果在区间上函数的图象是一条_的曲线,那么它必有最大值与最小值2求函数最值的步骤求函数在上的最大值与最小值的步骤如下:(1)求函数在内的_;(2)将函数的各极值与端点处的函数值比较,其中最大的一个是最大值,最小的一个是最小值K知识参考答案:1连续不断2极值K重点利用导数求函数最值的方法、函数最值的应用K难点函数的最大值、最小值与函数的极大值、极小值的区别与联系,恒成立问题K易错求最值时,易忽略函数的定义域求函数的最值求函数最值的步骤是:(1)求函数在内的极值;(2)将函数的各极值与端。

3、第一章 三角函数1.6 三角函数模型的简单应用1三角函数模型的简单应用三角函数作为描述现实世界中周期现象的一种数学模型,可以用来研究很多问题,在刻画周期变化规律、预测等方面发挥着十分重要的作用.教材中的例3、例4对太阳光照以及潮汐问题的研究为我们展示了怎样运用模型化的思想建立三角函数模型的方法和过程.2三角函数模型应用的步骤三角函数模型应用即建模问题,根据题意建立三角函数模型,再求出相应的三角函数在某点处的函数值,进而使实际问题得到解决.步骤可记为:审读题意建立三角函数式根据题意求出某点的三角函数值解决实际问。

4、第二章 平面向量2.1 平面向量的实际背景及基本概念1向量的概念既有大小又有_的量叫做向量只有大小没有方向的量称为数量,如长度、质量、面积、体积等;而向量是不仅有大小而且有方向的量,如位移、速度、加速度、力等数量可进行代数运算,向量不能比较大小大小是向量的代数特征,方向是几何特征,即向量具有代数与几何的双重特征温馨提示:(1)向量的模:向量的大小,也就是向量的长度记作_(2)零向量:长度为0的向量记作_的方向是_(3)单位向量:长度等于1个单位的向量,叫做_2向量的表示法(1)几何表示:用有向线段来表示,有向线段。

5、第四章 框 图4.1 流程图、4.2 结构图1流程图的概念由一些_和_构成的图示称为流程图流程图常常用来表示一些动态过程,通常会有一个“起点”,一个或多个“终点”流程图可以直观、明确地表示动态过程从开始到结束的全部步骤,在日常生活和工作的很多领域都得到广泛应用2流程图的特点(1)流程图通常用来描述一个过程性的活动活动的每一个明确的步骤构成流程图的一个基本单元,基本单元之间通过流程线产生联系基本单元中的内容要根据需要确定,可在基本单元中具体说明,也可为基本单元设置若干子单元即流程图由_和_构成(2)通常,人们习惯按。

6、1充分条件与必要条件一般地,“若p,则q”为真命题,是指由p通过推理可以得出q.这时,我们就说,由p可推出q,记作_,并且说p是q的充分条件,q是p的必要条件.如果“若p,则q”为假命题,那么由p推不出q,记作pq.此时,p不是q的充分条件,q不是p的必要条件.2充要条件 一般地,如果既有,又有,就记作_.此时,我们说,p是q的充分必要条件,简称充要条件.显然,如果p是q的充要条件,那么q也是p的充要条件. 概括地说,如果,那么p与q互为充要条件.注意:(1)判断p是q的什么条件,结果只有四种:充分不必要条件、必要不充分条件、充要条件、既。

7、一、棱柱、棱锥、棱台的表面积1棱柱、棱锥、棱台的表面积的概念棱柱、棱锥、棱台是由多个平面图形围成的多面体,它们的表面积就是各个面的面积之 ,因此,我们可以把多面体展开成平面图形,利用平面图形求面积的方法求多面体的表面积.2棱柱、棱锥、棱台的表面积(1)侧面积:棱柱、棱锥、棱台的侧面展开图分别是由若干个 、 、 所组成的.侧面展开图的面积称为几何体的侧面面积(即侧面积).由此可知,棱柱、棱锥、棱台的侧面积就是它们的各个侧面的面积之和.(2)表面积:棱柱、棱锥、棱台的平面展开图是将其所有 和 展开后形成的一个平面图形。

8、 1 高中数学新教材必修第一册知识点总结高中数学新教材必修第一册知识点总结 第一章第一章 集合与常用逻辑用语集合与常用逻辑用语 1.11.1 集合的概念集合的概念 1.集合的描述:集合的描述:一般地,我们把研究对象统称为元素元素,把一些元素组成的总体叫做集合集合,简称为集集. 2.集合的三个特性:集合的三个特性: (1)描述性:描述性: “集合”是一个原始的不加定义的概念,它同平面几何中的“点。

9、专题突破三 空间直角坐标系的构建策略,第二章 空间向量与立体几何,利用空间向量的方法解决立体几何问题,关键是依托图形建立空间直角坐标系,将其他向量用坐标表示,通过向量运算,判定或证明空间元素的位置关系,以及空间角、空间距离问题的探求.所以如何建立空间直角坐标系显得非常重要,下面简述空间建系的四种方法,希望同学们面对空间几何问题能做到有的放矢,化解自如. 一、利用共顶点的互相垂直的三条棱 例1 已知直四棱柱中,AA12,底面ABCD是直角梯形,DAB为直角,ABCD,AB4,AD2,DC1,试求异面直线BC1与DC所成角的余弦值.,解 如。

10、1空间两向量的夹角如图1,已知两个非零向量,在空间任取一点,作,则叫做向量,的夹角,记作由上述概念可知0,因此,两个向量的夹角是唯一确定的,且如图2,当时,向量,_;如图3,当时,向量,_,记作;如图4,当时,向量,_因此,当时,或对于空间任意两个向量,都有图1图2图3 图42空间向量的数量积已知两个非零向量,则叫做,的数量积,记作,即_类比平面向量,我们可得的几何意义:数量积等于的长度与在的方向上的投影的乘积由此可知,零向量与任何向量的数量积为_3空间向量数量积的性质(1)若是非零向量,是任意单位向量,则(2)若。

11、1利用导数解决优化问题生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题_是求函数最值问题的有力工具解决优化问题的基本思路是:K知识参考答案:1导数K重点利用导数解决生活中的优化问题K难点利用导数解决利润最大、用料最省、效率最高等问题K易错求利润最大、用料最省、效率最高等问题时,易忽略实际意义最大值问题实际生活中利润最大,容积、面积最大,流量、速度最大等问题都需要利用导数来求解相应函数的最大值若在定义域内只有一个极值点,且在极值点附近左增右减,则此时唯一的极大值就是最大值如图。

12、1综合法的定义利用_和某些数学_、_、_等,经过一系列的_,最后推导出所要证明的结论成立,这种证明方法叫做综合法2综合法的特点从“已知”看“_”,逐步推向“_”,其逐步推理,是由_导_,实际上是寻找“已知”的_条件3综合法的基本思路用_表示已知条件、已有的定义、定理、公理等,_表示所要证明的结论,则综合法的推理形式为其逻辑依据是三段论式演绎推理4分析法定义从要证明的_出发,逐步寻求使它成立的_条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法.学。

13、2.5 等比数列的前n项和1等比数列的前n项和公式若等比数列的首项为,公比为,则等比数列的前项和的公式为2等比数列前n项和公式的函数特性(1)当公比时,因为,所以是关于n的正比例函数,则数列的图象是正比例函数图象上的一群孤立的点(2)当公比时,等比数列的前项和公式是,即,设,则上式可写成的形式,则数列的图象是函数图象上的一群孤立的点由此可见,非常数列的等比数列的前n项和是一个关于n的指数型函数与一个常数的和,且指数型函数的系数与常数项互为相反数3等比数列前n项和的性质设等比数列的前n项和为,公比为q,则利用等比数。

14、1全称量词和全称命题 (1)短语“_”“_”在逻辑中通常叫做全称量词,并用符号“_”表示,常见的全称量词还有“一切”“每一个”“任给”“所有的”等(2)含有_的命题,叫做全称命题(3)全称命题:“对M中任意一个x,有 成立”,可用符号简记为_注意:全称命题含有全称量词,有些全称命题中的全称量词是可以省略的,理解时需要把它补充出来.2存在量词和特称命题 (1)短语“_”“_”在逻辑中通常叫做存在量词,并用符号“_”表示,常见的存在量词还有“有些”“有一个”“对某个”“有的”等学科¥网(2)含有_的命题,叫做特称命题(3。

15、1综合法的定义利用_和某些数学_、_、_等,经过一系列的_,最后推导出所要证明的结论成立,这种证明方法叫做综合法2综合法的特点从“已知”看“_”,逐步推向“_”,其逐步推理,是由_导_,实际上是寻找“已知”的_条件3综合法的基本思路用_表示已知条件、已有的定义、定理、公理等,_表示所要证明的结论,则综合法的推理形式为其逻辑依据是三段论式演绎推理4分析法定义从要证明的_出发,逐步寻求使它成立的_条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法.5分。

16、1函数的单调性与其导数的关系在某个区间内,如果_,那么函数在这个区间内单调递增;如果_,那么函数在这个区间内单调递减注意:在某个区间内,()是函数在此区间内单调递增(减)的充分条件,而不是必要条件函数在内单调递增(减)的充要条件是()在内恒成立,且在的任意子区间内都不恒等于02函数图象与之间的关系一般地,如果一个函数在某一范围内导数的绝对值较_,那么函数在这个范围内变化得快,这时,函数的图象就比较“陡峭”(向上或向下);反之,函数的图象就“平缓”一些K知识参考答案:12大K重点利用导数判断函数的单调性K难。

17、1利用导数解决优化问题生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题_是求函数最值问题的有力工具解决优化问题的基本思路是:K知识参考答案:1导数K重点利用导数解决生活中的优化问题K难点利用导数解决利润最大、用料最省、效率最高等问题K易错求利润最大、用料最省、效率最高等问题时,易忽略实际意义最大值问题实际生活中利润最大,容积、面积最大,流量、速度最大等问题都需要利用导数来求解相应函数的最大值若在定义域内只有一个极值点,且在极值点附近左增右减,则此时唯一的极大值就是最大值如图。

18、1函数的单调性与其导数的关系在某个区间内,如果_,那么函数在这个区间内单调递增;如果_,那么函数在这个区间内单调递减注意:在某个区间内,()是函数在此区间内单调递增(减)的充分条件,而不是必要条件函数在内单调递增(减)的充要条件是()在内恒成立,且在的任意子区间内都不恒等于0学科&网2函数图象与之间的关系一般地,如果一个函数在某一范围内导数的绝对值较_,那么函数在这个范围内变化得快,这时,函数的图象就比较“陡峭”(向上或向下);反之,函数的图象就“平缓”一些K知识参考答案:12大K重点利用导数判断函数的单。

19、一、逻辑联结词“且” 1一般地,用联结词“且”把命题p和q联结起来,就得到一个新命题,记作_,读作p且q.2关于逻辑联结词“且”(1)“且”的含义与日常语言中的“并且”、“及”、“和”相当,是连词“既又”的意思,二者须_成立(2)从如图所示串联开关电路上看,当两个开关S1、S2_时,灯才能亮;当两个开关S1、S2中一个不闭合或两个都不闭合时,灯都不会亮(3)从集合角度理解“且”即集合运算“_”设命题p:,命题q:,则且(4)“”是这样的一个复合命题:当p、q都是真命题时,是_命题;当p、q两个命题中有一个命题是假命题时,是_命。

20、一、逻辑联结词“且” 1一般地,用联结词“且”把命题p和q联结起来,就得到一个新命题,记作_,读作p且q.2关于逻辑联结词“且”(1)“且”的含义与日常语言中的“并且”、“及”、“和”相当,是连词“既又”的意思,二者须_成立(2)从如图所示串联开关电路上看,当两个开关S1、S2_时,灯才能亮;当两个开关S1、S2中一个不闭合或两个都不闭合时,灯都不会亮(3)从集合角度理解“且”即集合运算“_”设命题p:,命题q:,则且(4)“”是这样的一个复合命题:当p、q都是真命题时,是_命题;当p、q两个命题中有一个命题是假命题时,是_命。

【2020高中数学专题09】相关PPT文档
【2020高中数学专题09】相关DOC文档
标签 > 2020高中数学专题09[编号:78978]