第四章 数系的扩充与复数的引入 章末复习学案含答案

章末检测(四) (时间:120分钟满分:150分) 一、选择题(本大题共12小题,每小题5分,共60分) 1i是虚数单位,若集合S1,0,1,则() AiS Bi2S Ci3S D.S 2z1(m2m1)(m2m4)i,mR,z232i,则“m1”是“z1z2”的() A充分不必要条件B必要不充分条

第四章 数系的扩充与复数的引入 章末复习学案含答案Tag内容描述:

1、章末检测(四)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1i是虚数单位,若集合S1,0,1,则()AiS Bi2S Ci3S D.S2z1(m2m1)(m2m4)i,mR,z232i,则“m1”是“z1z2”的()A充分不必要条件B必要不充分条件C充要条件D既不充分又不必要条件3i是虚数单位,复数等于()A12i B24i C12i D2i4已知a是实数,是纯虚数,则a等于()A1 B1 C. D5若(xi)iy2i,x,yR,则复数xyi等于()A2i B2iC12i D12i6设a,b为实数,若复数1i,则()Aa,b Ba3,b1Ca,b Da1,b37已知关于复数z的四个命题:p1:|z|2,p2:z22i,p3:z的共轭复数为1i。

2、第三章 数系的扩充与复数的引入 章末复习 学习目标1.巩固复数的概念和几何意义.2.理解并能进行复数的四则运算且认识复数加减法的几何意义 1复数的有关概念 (1)复数的概念 形如abi(a,bR)的数叫做复数,其中a,b分别是它的实部和虚部若b0,则abi为实数,若b0,则abi为虚数,若a0且b0,则abi为纯虚数 (2)复数相等:abicdiac且bd(a,b,c,dR) (3)共轭复数:ab。

3、章末复习学习目标1.掌握复数的有关概念及复数相等的充要条件.2.理解复数的几何意义.3.掌握复数的相关运算1复数的有关概念(1)复数的概念:形如abi(a,bR)的数叫作复数,其中a,b分别是它的实部和虚部若b0,则abi为实数,若b0,则abi为虚数,若a0且b0,则abi为纯虚数(2)复数相等:abicdiac且bd(a,b,c,dR)(3)共轭复数:abi与cdi共轭ac,bd0(a,b,c,dR)(4)复平面:建立直角坐标系来表示复数的平面叫作复平面x轴叫作实轴,y轴叫作虚轴实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数;各象限内的点都表示非纯虚数(5)复数的模:。

4、章末复习学习目标1.掌握复数的有关概念及复数相等的充要条件.2.理解复数的几何意义.3.掌握复数的相关运算1复数的有关概念(1)复数的概念:形如abi(a,bR)的数叫做复数,其中a,b分别是它的实部和虚部若b0,则abi为实数,若b0,则abi为虚数,若a0且b0,则abi为纯虚数(2)复数相等:abicdiac且bd(a,b,c,dR)(3)共轭复数:abi与cdi共轭ac,bd0(a,b,c,dR)(4)复平面:建立直角坐标系来表示复数的平面叫做复平面x轴叫做实轴,y轴叫做虚轴实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数;各象限内的点都表示非纯虚数(5)复数的模:。

5、章末检测试卷(四)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1若i为虚数单位,则复数z5i(34i)在复平面内对应的点所在的象限为()A第一象限 B第二象限C第三象限 D第四象限考点复数的乘除法运算法则题点运算结果与点的对应答案A2“复数z是实数”的充分不必要条件为()A|z|z BzCz2是实数 Dz是实数考点复数的概念题点复数的概念及分类答案A解析由|z|z可知z必为实数,但由z为实数不一定得出|z|z,如z2,此时|z|z,故“|z|z”是“z为实数”的充分不必要条件3已知a,bR,i是虚数单位若ai2bi,则(abi)2等于()A34i B34。

6、章末复习一、选择题1如图所示的是今年元宵花灯展中一款五角星灯连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是()考点归纳推理的应用题点归纳推理在图形中的应用答案A解析从所给三个图形中,可以看出,三个黑色三角形在进行顺时针旋转,每次旋转都是隔一格,故选A.2若abCbaD.考点分析法及应用题点分析法解决不等式问题答案C解析取a2,b1,验证可知C正确3我们把1,4,9,16,25,这些数称为“正方形点数”,这是因为这些数量的点可以排成一个正方形,如图所示,则第n个正方形点数是()An(n1) Bn(n1)C(n1)2 Dn2考点归纳推理的。

7、章末复习学习目标1.掌握复数的有关概念及复数相等的充要条件.2.理解复数的几何意义.3.掌握复数的相关运算1复数的有关概念(1)复数的概念:形如abi(a,bR)的数叫作复数,其中a,b分别是它的实部和虚部若b0,则abi为实数,若b0,则abi为虚数,若a0且b0,则abi为纯虚数(2)复数相等:abicdiac且bd(a,b,c,dR)(3)共轭复数:abi与cdi共轭ac,bd0(a,b,c,dR)(4)复平面:建立直角坐标系来表示复数的平面叫作复平面x轴叫作实轴,y轴叫作虚轴实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数;各象限内的点都表示非纯虚数(5)复数的模:。

标签 > 第四章 数系的扩充与复数的引入 章末复习学案含答案[编号:115669]