第六章数列与数学归纳法

第6讲数基础达标1凸n边形有f(n)条对角线,则凸(n1)边形的对角线的条数f(n1)为()Af(n)n1Bf(n)nCf(n)n1Df(n)n2解析:选C.边数增加1,顶点也相应增加1个,它与和它不相邻的n2个顶点连接成对角线,原来的一条边也成为对角线,因此,对角线增加n1条2用数学归纳法证明“当

第六章数列与数学归纳法Tag内容描述:

1、第6讲 数基础达标1凸n边形有f(n)条对角线,则凸(n1)边形的对角线的条数f(n1)为()Af(n)n1Bf(n)nCf(n)n1Df(n)n2解析:选C.边数增加1,顶点也相应增加1个,它与和它不相邻的n2个顶点连接成对角线,原来的一条边也成为对角线,因此,对角线增加n1条2用数学归纳法证明“当n为正奇数时,xnyn能被xy整除”的第二步是()A假设n2k1时正确,再推n2k3时正确(其中kN*)B假设n2k1时正确,再推n2k1时正确(其中kN*)C假设nk时正确,再推nk1时正确(其中kN*)D假设nk时正确,再推nk2时正确(其中kN*)解析:选B.因为n为正奇数,所以n2k1(kN*)3用数学归纳法证明:。

2、第5讲 数列的综合应用基础达标1(2019杭州第一次质量预测)正项等比数列an中的a1、a4 035是函数f(x)x34x26x3的极值点,则loga2 018()A1B2CD1解析:选A.因为f(x)x28x6,且a1、a4 035是方程x28x60的两根,所以a1a4 035a6,即a2 018,所以loga2 0181,故选A.2已知数列an满足:a11,an1(nN*)若bn1(n2)(nN*),b1,且数列bn是单调递增数列,则实数的取值范围是()Abn,所以(n2)2n(n12)。

3、第3讲 等比数列及其前n项和基础达标1(2019宁波质检)在单调递减的等比数列an中,若a31,a2a4,则a1()A2B4CD2解析:选B.在等比数列an中,a2a4a1,又a2a4,数列an为递减数列,所以a22,a4,所以q2,所以q,a14.2(2019衢州模拟)设Sn为等比数列an的前n项和,a28a50,则的值为()ABC2D17解析:选B.设an的公比为q,依题意得q3,因此q.注意到a5a6a7a8q4(a1a2a3a4),即有S8S4q4S4,因此S8(q41)S4,q41,选B.3(2019瑞安四校联考)已知数列an的首项a12,数列bn为等比数列,且bn,若b10b112,则a21()A29B210C211D212解析:选C.由bn,且a12,得b1,a22b1。

4、第2讲 等差数列及其前n项和基础达标1等差数列an的前n项和为Sn,若a12,S312,则a6等于()A8B10C12D14解析:选C.由题知3a1d12,因为a12,解得d2,又a6a15d,所以a612,故选C.2(2019浙江新高考冲刺卷)已知等差数列an,Sn是an的前n项和,则对于任意的nN*,“an0”是“Sn0”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件解析:选A.对于任意的nN*,“an0”能推出“Sn0”,是充分条件,反之,不成立,比如:数列5,3,1,1,不满足条件,不是必要条件,故选A.3已知等差数列an,且3(a3a5)2(a7a10a13)48,则数列an的前13项之。

5、第1讲 数列的概念与简单表示法基础达标1已知数列1,2,则2在这个数列中的项数是()A16B24C26D28解析:选C.因为a11,a22,a3,a4,a5,所以an.令an2,解得n26.2在数列an中,a11,anan1an1(1)n(n2,nN*),则的值是()ABCD解析:选C.由已知得a21(1)22,所以2a32(1)3,a3,所以a4(1)4,a43,所以3a53(1)5,所以a5,所以.3(2019杭州模拟)数列an定义如下:a11,当n2时,an若an,则n的值为()A7B8C9D10解析:选C.因为a11,所以a21a12,a3,a41a23,a5,a61a3,a7,a81a44,a9,所以n9,故选C.4已知数列an的首项a1a,其前n项和为Sn,且满足SnSn1。

6、第4讲 数列求和基础达标1若数列an的通项公式是an(1)n(3n2),则a1a2a12()A18B15C18D15解析:选A.记bn3n2,则数列bn是以1为首项,3为公差的等差数列,所以a1a2a11a12(b1)b2(b11)b12(b2b1)(b4b3)(b12b11)6318.2已知an是首项为1的等比数列,Sn是an的前n项和,且9S3S6,则数列的前5项和为()A或5B或5CD解析:选C.设数列an的公比为q.由题意可知q1,且,解得q2,所以数列是以1为首项,为公比的等比数列,由求和公式可得S5.3数列an的通项公式是an,若前n项和为10,则项数n为()A120B99C11D121解析:选A.an,所以a1a2an(1)()()110.即11,所以n1121,n。

标签 > 第六章数列与数学归纳法[编号:8010]