等差数列的前n项和二课后作业含答案

4 4. .2.22.2 等差数列的前等差数列的前 n n 项和公式项和公式 第第 1 1 课时课时 等差数列前等差数列前 n n 项和公式的推导及简单应用项和公式的推导及简单应用 学习目标 1.了解等差数列前 n 项和公式的推导过程.2.掌握等差数列前 n 项和公式.3.熟练掌 握等差数列的五个量

等差数列的前n项和二课后作业含答案Tag内容描述:

1、4 4. .2.22.2 等差数列的前等差数列的前 n n 项和公式项和公式 第第 1 1 课时课时 等差数列前等差数列前 n n 项和公式的推导及简单应用项和公式的推导及简单应用 学习目标 1.了解等差数列前 n 项和公式的推导过程.2.掌握等差数列前 n 项和公式.3.熟练掌 握等差数列的五个量 a1,d,n,an,Sn的关系,能够由其中三个求另外两个 知识点 等差数列的前 n 项和公式 已。

2、4.2.2 等差数列的前等差数列的前 n 项和公式项和公式 第第 1 课时课时 等差数列前等差数列前 n 项和公式的推导及简单应用项和公式的推导及简单应用 1已知等差数列an的前 n 项和为 Sn,若 2a6a86,则 S7等于( ) A49 B42 C35 D28 答案 B 解析 2a6a8a46,S77 2(a1a7)7a442. 2在等差数列an中,已知 a110,d2,Sn580,则 。

3、第第 2 2 课时课时 等差数列前等差数列前 n n 项和的性质及应用项和的性质及应用 学习目标 1.进一步熟练掌握等差数列的通项公式和前 n 项和公式,了解等差数列前 n 项和 的一些性质.2.掌握等差数列前 n 项和的最值问题 知识点一 等差数列前 n 项和的性质 1若数列an是公差为 d 的等差数列,则数列 Sn n 也是等差数列,且公差为d 2. 2设等差数列an的公差为 d,Sn为其。

4、第第 2 课时课时 等差数列前等差数列前 n 项和的性质及应用项和的性质及应用 1在等差数列an中,a11,其前 n 项和为 Sn,若S8 8 S6 62,则 S10 等于( ) A10 B100 C110 D120 答案 B 解析 an是等差数列,a11, Sn n 也是等差数列且首项为S1 11. 又S8 8 S6 6 2, Sn n 的公差是 1, S10 101(101)110。

5、2.2等差数列的前n项和(一)基础过关1.等差数列an的前n项和为Sn,且S36,a34,则公差d等于()A.1 B. C.2 D.3解析设an首项为a1,公差为d,则S33a1d3a13d6,a3a12d4,a10,d2.答案C2.已知等差数列an的前n项和Snn2n,则过P(1,a1),Q(2,a2)两点的直线的斜率是()A.1 B.2 C.3 D.4解析Snn2n,a1S12,a2S2S1624.过P、Q两点直线的斜率k2.答案B3.记等差数列an的前n项和为Sn,若a1,S420,则S6()A.16 B.24 C.36 D.48解析S426d20,d3.故S6315d48.答案D4.等差数列an的前n项和为Sn,且6S55S35,则a4_.解析由题意知6515a145d15(a13d)15a45,故a4.答案5。

6、2.2等差数列的前n项和(二)基础过关1.已知等差数列an满足a1a2a3a1010,则有()A.a1a1010 B.a1a101200.n19时,剩余钢管根数最少,为10根.答案B3.已知各项为正数的等差数列an的前20项和为100,那么a7a14的最大值为()A.25 B.50C.100 D.不存在解析an为等差数列,S2010(a1a20)10(a7a14。

标签 > 等差数列的前n项和二课后作业含答案[编号:101811]