有理数的乘除法和乘方 _ _ 1.掌握有理数乘除法运算法则和计算题; 2.掌握有理数乘方运算法则和计算题. 1乘法运算法则: (1)两数相乘,同号为_,异号为_,并把绝对值相乘。 (2)任何数字同0相乘,都得0。 (3)几个不等于0的数字相乘,积的符号由负因数的个数决定。当负因数有_个数时,积为负
北师大版初一上数学第11讲整式加减学生版著名机构讲义Tag内容描述:
1、有理数的乘除法和乘方_1.掌握有理数乘除法运算法则和计算题;2.掌握有理数乘方运算法则和计算题.1乘法运算法则:(1)两数相乘,同号为_,异号为_,并把绝对值相乘。(2)任何数字同0相乘,都得0。(3)几个不等于0的数字相乘,积的符号由负因数的个数决定。当负因数有_个数时,积为负;当负因数有_个数时,积为正。(4)几个数相乘,有一个因数为0时,积为0.2.除法运算法则:(1)除以一个数等于乘以这个数的倒数。(注意:_没有倒数)(2)两数相除,同号为正,异号为负,并把绝对值相除。(3)0除以任何一个不等于0的数,都等于0。(4。
2、一元一次方程的应用_1、 通过观察、归纳得出等数学模型的思想。2、 通过应用题教学使学生进一步使用代数中的方程去反映现实中的相等关系,体会代数方法的优越性。3、能够“找出实际问题中的已知数和求知数,分析它们之间的关系,高级求知数,列出方程表示问题中的相等立关系”,体会建立一步体会利用一元一次方程解决问题的基本过程,感受数学的应用价值,提高分析问题、解决问题的能力。4、通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程解决问题的基本过程,感受数学的应用价值,提高分析问题、解决问题的能力。1. 。
3、一元一次方程_1、 通过处理实际问题,让学生体验从算术方法到代数方法是一种进步;2、 初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;3、 培养学生获取信息,分析问题,处理问题的能力。1 方程定义(1) 定义:_叫做方程。(2) 第一种包含两个要素:必须是等式;必须含有未知数;两者缺一不可。(3) 易错点:方程一定是_,但_不一定是方程;方程中的未知数可以用x表示,也可以用其他字幕表示;方程中可含有多个未知数。2.一元一次方程(1)定义:只含有_未知数,未知数的次数都是_,等号两边都是整式的方程叫做一元一次。
4、投影与三视图_1、学会根据物体的三视图描述几何体的基本形状或实物原型;2、经历探索简单的几何体的三视图的还原,进一步发展空间想象能力;3、知道将三视图转换成立体图在生产中的作用,使学生体会到所学的知识有重要的实用价值1平行投影(1)物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影现象一般地,用光线照射物体,在某个平面(底面,墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面(2)平行投影:由_光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影。
5、几何图形(2)_1、进一步认识点、线、面、体的概念,明确它们之间的关系;2、通过对点、线、面、体的认识,经历用图形描述现实世界的过程,用它们来解释生活中的现象;3、认识数学与现实生活的密切联系,培养学生与他人交流、合作的意识1点、线、面、体(1)体与体相交成面,面与面相交成线,线与线相交成点(2)从运动的观点来看点动成线,线动成面,面动成体点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界(3)从几何的观点来看_是组成图形的基本元素,_都是点的集合(4)长方体、正方体、圆柱、圆锥、球、。
6、几何图形(1)_1、初步认识立体图形与平面图形的概念,能从具体实物中抽象出圆柱、圆锥、棱柱、棱锥、球等简单立体图形,能把一些立体图形转化为平面图形;2、探索平面图形与立体图形之间的关系,发展空间观念,培养观察、分析、抽象、概括的能力和动手操作能力;3、通过所观察的现实情境和动手操作进行合作学习的过程,培养学生学习的主动性和积极性1几何图形几何图形:从实物中抽象出的各种图形叫几何图形几何图形分为_和_2立体图形立体图形:有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分_同一个平面内,这就是立体图形。
7、正数与负数_1、 体会引入负数的必要性,理解正数负数的概念并熟练掌握;2、 掌握正负数表示具有相反意义的量,并灵活应用;3、 学生能借助具体例子,用实际意义(如“增加”与“减少”,“收入”与“支出”等)说明负数的含义在含有相反意义的量的问题情境中,学生能用正数和负数来表示相应的量。1.正数与负数定义(1)定义:_的数叫做正数,在正数前加上_的数叫做负数。(2)含义:_就是我们小学学习的大于0的数。每一个正数前加上一个_就得到对应的一个负数,所以有多少正数就对应多少个_。(3)二级结论:数由_与_两部分构成;_包括正数。
8、有理数_1、 了解有理数的分类。2、掌握数轴的定义和性质以及它的作用。3、掌握有关有理数和数轴的典型题目的解题方法。有理数1、有理数的概念_、_、_统称为整数(0和正整数统称为_自然数)_和_统称为分数正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。理解:只有能化成分数的数才是有理数。是无限不循环小数,不能写成分数形式,不是有理数。有限小数和无限循环小数都可化成分数,都是有理数。注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8也是偶数,-1,-3,-5也是奇数。2、有理数的分类总。
9、有理数的乘除法和乘方_1.掌握有理数乘除法运算法则和计算题;2.掌握有理数乘方运算法则和计算题.1乘法运算法则:(1)两数相乘,同号为_,异号为_,并把绝对值相乘。(2)任何数字同0相乘,都得0。(3)几个不等于0的数字相乘,积的符号由负因数的个数决定。当负因数有_个数时,积为负;当负因数有_个数时,积为正。(4)几个数相乘,有一个因数为0时,积为0.2.除法运算法则:(1)除以一个数等于乘以这个数的倒数。(注意:_没有倒数)(2)两数相除,同号为正,异号为负,并把绝对值相除。(3)0除以任何一个不等于0的数,都等于0。(4。
10、数据的收集与整理_1.了解全面调查和抽样调查的定义,掌握抽样调查各个名词的含义;2.理解直方图的定义会运用;3、掌握扇形图和直方图的区别,会综合运用.1数据处理的过程(1) 数据处理一般包括收集数据、整理数据、描述数据和分析数据等过程。收集数据的方法:a、民意调查:如投票选举 b、实地调查:如现场进行观察、收集、统计数据 c、媒体调查:报纸、电视、电话、网络等调查都是媒体调查。注意:选择收集数据的方法,要掌握两个要点:是要简便易行,要真实、全面。(2) 数据处理可以帮助我们了解生活中的现象,对未知的事情作出合理。
11、图形初步认识1、 能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;能把一些立体图形的问题,转化为平面图形进行研究和处理,探索平面图形与立体图形之间的关系。2、 经历探索平面图形与立体图形之间的关系,发展空间观念,培养提高观察、分析、抽象、概括的能力,培养动手操作能力,经历问题解决的过程,提高解决问题的能力。3、 积极参与教学活动过程,形成自觉、认真的学习态度,培养敢于面对学习困难的精神,感受几何图形的美感;倡导自主学习和小组合作精神,在独立思考的基础上,能从小组交流中获益,并对学习过程进行正。
12、投影与三视图_1、学会根据物体的三视图描述几何体的基本形状或实物原型;2、经历探索简单的几何体的三视图的还原,进一步发展空间想象能力;3、知道将三视图转换成立体图在生产中的作用,使学生体会到所学的知识有重要的实用价值1平行投影(1)物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影现象一般地,用光线照射物体,在某个平面(底面,墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面(2)平行投影:由_光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影。
13、有理数_1、 了解有理数的分类。2、掌握数轴的定义和性质以及它的作用。3、掌握有关有理数和数轴的典型题目的解题方法。有理数1、有理数的概念_、_、_统称为整数(0和正整数统称为_自然数)_和_统称为分数正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。理解:只有能化成分数的数才是有理数。是无限不循环小数,不能写成分数形式,不是有理数。有限小数和无限循环小数都可化成分数,都是有理数。注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8也是偶数,-1,-3,-5也是奇数。2、有理数的分类总。
14、正数与负数_1、 体会引入负数的必要性,理解正数负数的概念并熟练掌握;2、 掌握正负数表示具有相反意义的量,并灵活应用;3、 学生能借助具体例子,用实际意义(如“增加”与“减少”,“收入”与“支出”等)说明负数的含义在含有相反意义的量的问题情境中,学生能用正数和负数来表示相应的量。1.正数与负数定义(1)定义:_的数叫做正数,在正数前加上_的数叫做负数。(2)含义:_就是我们小学学习的大于0的数。每一个正数前加上一个_就得到对应的一个负数,所以有多少正数就对应多少个_。(3)二级结论:数由_与_两部分构成;_包括正数。
15、有理数的加减_1.掌握有理数加法运算法则和计算题;2.掌握有理数减法运算法则和计算题;3.掌握有理数加减混合运算的计算技巧.1(1)加法法则同号相加,取相同符号,并把绝对值相加.绝对值不相等的异号两数加减,取_的符号,并用较大的绝对值_较小的绝对值.一个数同0相加,仍得这个数._相加结果一定得0。(2)交换律和结合律有理数的加法同样拥有交换律和结合律(和整数得交换律和结合律一样)用字母表示为:交换律:a+b=b+a结合律:a+b+c=(a+b)+c=a+(b+c)2.运算要点:(1)同号相。
16、整式加减_1、 认识整式。2、 掌握整式的加法算理。3、 掌握整式加法定律。4、掌握解决整式相关题目的方法。1. 单项式:数与字母的乘积,叫做单项式。单独的一个数或一个字母也是单项式。2. 单项式的系数:单项式中的数字因数叫做单项式的系数。3. 单项式的次数:一个单项式中,所有字母指数的和叫做这个单项式的次数。4. 多项式:几个单项式的和叫做多项式。5. 多项式的项:多项式中每个单项式叫做多项式的项。6. 常数项:在多项式中,不含字母的项叫做常数项。7. 多项式的次数:多项式里次数最高项的次数,叫做这个多项式的次数。8. 升幂。