专题02追赶模型模型界定本模型主要处理两物体能否追及的判定、距离极值的计算等问题.从时间和空间的角度来讲,追及相遇是指同一时刻两物体到达同一位置包括两物体的运动轨迹在同一直线及不在同一直线上的本模型中涉及电表的结构与工作原理,电表的改装与校正,非理想电表的处理等图电流表构造图模型破解1.电流表的关键
半角模型Tag内容描述:
1、一、模型界定本模型是由弹簧连接的物体系统中关于平衡的问题、动力学过程分析的问题、功能关系的问题,但不包括瞬时性的问题。由弹性绳、橡皮条连接的物体系统也归属于本模型的范畴二、模型破解1.由胡克定律结合平衡条件或牛顿运动定律定量解决涉及弹簧弹力、弹簧伸长量的问题。(i)轻质弹簧中的各处张力相等,弹簧的弹力可认为是其任一端与所连接物体之间的相互作用力。(ii)弹簧可被拉伸,也可被压缩,即弹簧的弹力可以是拉力也可以是推力(当然弹性绳、橡皮条只能产生拉力)。(iii)弹簧称只能被拉伸,对弹簧秤的两端施加(沿轴线方。
2、模型界定本模型主要着眼于连接体问题的一般处理方法,从静力学中连接体、动力学中连接体、功能问题中连接体等多个角度进行示例模型破解1.连接体两个或两个以上物体相互接触或连接参的系统称为连接体。、2.处理连接体问题的基本方法在分析和求解物理连接体问题时关键之一,就是研究对象的选取问题.其方法有两种:一是隔离法,二是整体法.(i).隔离法所谓隔离法就是将所研究的对象(指被研究的物体、所处的状态或所经历的某些过程),从周围环境或全过程中隔离出来进行研究的方法.运用隔离法解题的基本步骤:明确研究目的,选择隔离对象.选择。
3、一模型界定本模型是指涉及固定斜面或自由斜面的力学问题,涉及斜面的抛体或类抛体的动力学问题,也包括环套在倾斜杆上的情形。二模型破解1. 整体法与隔离法处理斜面上的受力问题(i)物体在斜面上处于静止或运动状态、斜面固定或不固定的情况下,涉及物体与斜面间作用时应采用隔离法,反之则可采用整体法,但通常需将整体法与隔离法结合使用。(ii)当物体运动中斜面也处于变速运动状态时,可利用矢量三角形处理斜面系统的变速运动(iii)解决斜面问题时,应先进行受力分析,当物体受力较多时,可建立正交坐标系,利用三大观点列方程求解。。
4、模型界定本模型主要是理想气体模型,涉及气体分子动理论、气体定律以及热力学定律与气体状态方程相结合的问题。模型破解1.气体分子动理论:人们从分子运动的微观模型出发,给出某些简化的假定,结合概率和统计力学的知识,提出了气体分子动理论,其主要如下:(i)气体是由分子组成的,分子是很小的粒子,彼此间的距离比分子的直径(10-10m)大许多,分子体积与气体体积相比可以略而不计。(ii)气体分子以不同的速度在各个方向上处于永恒的无规则运动之中。(iii)气体分子运动的速度按一定的规律分布,速度太大或速度太小的分子数目都很少.。
5、模型界定本模型中涉及变压器结构与原理,常见各种变压器,涉及变压器问题的解题思路以及变压器的动态分析问题。模型破解1.变压器(i)结构如图1所示为变压器的结构图,它是由闭合铁芯和绕在铁芯上的两个线圈组成的.跟电源相连的叫原线圈;另一个线圈跟负载连接,叫副线圈.铁芯由涂有绝缘漆的硅钢片叠合而成.(ii)工作原理当在原线圈上加交变电源时,原线圈中就有交变电流,它在铁芯上中产生交变磁通量,磁通量通过铁芯也穿过副线圈,磁通量的变化在副线圈上产生感应电动势.若副线圈上接有负载形成闭合电路,有交变电流通过时,也会产生磁通量。
6、模型界定本模型主要涉及电阻定义、电阻定律电阻率以及线性与非线性元件、半导体与超导体的问题。模型破解1.电阻导体两端的电压和通过它的电流的比值:R=U/I.导体的电阻反映了导体对电流的阻碍作用大小.2. 电阻定律在一定温度下,导体的电阻与导体本身的长度成正比,跟导体的横截面积成反比:(i)是导休电阻大小决定式,表明导体电阻由导体本身因素(电阻率、长度l和横截面积S)决定,与其他因素无关.(ii)为材料的电阻率,单位为欧姆米(m),与材料种类和温度有关.因为随温度而变化,故计算出的是某一特定温度下的电阻.(iii)L是导体沿电流方。
7、模型界定本模型是有关于光的本性、光的粒子性及光子与其它物体的作用规律,不涉及光的波动性规律问题。模型破解1. 光子起源1900年,M.普朗克解释黑体辐射能量分布时作出量子假设,物质振子与辐射之间的能量交换是不连续的,一份一份的,每一份的能量为h;1905年阿尔伯特爱因斯坦进一步提出光波本身就不是连续的而具有粒子性,爱因斯坦称之为光量子;1923年A.H.康普顿成功地用光量子概念解释了X光被物质散射时波长变化的康普顿效应,从而光量子概念被广泛接受和应用,1926年正式命名为光子。 2.光子的粒子特性(i)光子是光线中携带能量的粒。
8、模型界定本模型主要涉及电阻定义、电阻定律电阻率以及线性与非线性元件、半导体与超导体的问题。模型破解1.电阻导体两端的电压和通过它的电流的比值:R=U/I.导体的电阻反映了导体对电流的阻碍作用大小.2. 电阻定律在一定温度下,导体的电阻与导体本身的长度成正比,跟导体的横截面积成反比:(i)是导休电阻大小决定式,表明导体电阻由导体本身因素(电阻率、长度l和横截面积S)决定,与其他因素无关.(ii)为材料的电阻率,单位为欧姆米(m),与材料种类和温度有关.因为随温度而变化,故计算出的是某一特定温度下的电阻.(iii)L是导体沿电流方。
9、模型界定本模型主要是理想气体模型,涉及气体分子动理论、气体定律以及热力学定律与气体状态方程相结合的问题。模型破解1.气体分子动理论:人们从分子运动的微观模型出发,给出某些简化的假定,结合概率和统计力学的知识,提出了气体分子动理论,其主要如下:(i)气体是由分子组成的,分子是很小的粒子,彼此间的距离比分子的直径(10-10m)大许多,分子体积与气体体积相比可以略而不计。(ii)气体分子以不同的速度在各个方向上处于永恒的无规则运动之中。(iii)气体分子运动的速度按一定的规律分布,速度太大或速度太小的分子数目都很少.。
10、模型界定本模型中涉及电表的结构与工作原理,电表的改装与校正,非理想电表的处理等 图 电流表构造图模型破解1.电流表的关键构造(1)蹄形磁铁和铁芯间的磁场是均匀地幅向分布的(2)铝框上绕有线圈,铝框的转轴上装有两个螺旋弹簧和一个指针2电流表的工作原理线圈中通有电流时,磁场对电流的安培力使线圈发生转动图 电流表工作原理图由于磁场是均匀幅向分布的,不论通电线自转到什么位置,线圈平面都跟磁感线平行,安培力的不随线圈所处的位置书生改变,只与通过的电流成正比当线圈转动时两弹簧产生阻碍其转动的作用(扭转力矩),此作用的大。
11、模型界定本模型虽题为氢原子模型,但也涉及了原子的各种理论模型,着重处理的是氢原子模型的玻尔理论、能级跃迁等问题。模型破解1. 几种原子结构模型(I)道尔顿的实心小球原子结构模型1803年,英国自然科学家约翰道尔顿提出了世界上第一个原子的理论模型。 他的理论主要有以下三点: 原子都是不能再分的粒子;同种元素的原子的各种性质和质量都相同;原子是微小的实心球体。 虽然,经过后人证实,这是一个失败的理论模型,但道尔顿第一次将原子从哲学带入化学研究中,明确了今后化学家们努力的方向,化学真正从古老的炼金术中摆脱出来,道尔。
12、模型界定本模型主要归纳电场的产生、描述以及一种特殊电场匀强电场的性质,不涉及点电荷的电场模型破解1. 静电场的产生静电场产生于带电体的周围2. 静电场的基本性质对放入其中的电荷产生力的作用3. 静电场的描述(i)电场的力的性质(I)电场强度放入电场中某点的电荷所受的电场力与所带电荷量的比值,E=F/q电场强度是矢量,方向与放在该处的正电荷受力方向相同当空间几个带电体同时存在时,他们的电场互相叠加形成合电场合电场的电场强度等于各个带电体单独存在时所产生的电场强度的适量和电场强度是绝对的,在场源电荷确定的情况下,空间每。
13、模型界定本模型是有关于光的本性、光的粒子性及光子与其它物体的作用规律,不涉及光的波动性规律问题。模型破解1. 光子起源1900年,M.普朗克解释黑体辐射能量分布时作出量子假设,物质振子与辐射之间的能量交换是不连续的,一份一份的,每一份的能量为h;1905年阿尔伯特爱因斯坦进一步提出光波本身就不是连续的而具有粒子性,爱因斯坦称之为光量子;1923年A.H.康普顿成功地用光量子概念解释了X光被物质散射时波长变化的康普顿效应,从而光量子概念被广泛接受和应用,1926年正式命名为光子。 2.光子的粒子特性(i)光子是光线中携带能量的粒。
14、本模型主要归纳通电导线产生的磁场、通电导线在磁场中受力、通电导线之间的相互作用及通电导线在安培力作用下运动方向的判定.模型破解1.通电导线产生的磁场(i)通电直导线通电直导线产生的磁场中某点磁感应强度的大小与电流成正比,与该点到电流的距离成反比通电直导线产生的磁场中某点磁场方向遵从安培定则:右手握住导线,让伸直的拇指所指的方向跟电流的方向一致,弯曲的四指所指的方向就是磁感线的环绕方向.(ii)通电导线环通电直导线产生的磁场中某点磁感应强度的大小与电流成正比,与该点的位置有关.通电导线环产生的磁场中某点磁场方向。
15、模型界定本模型主要归纳分子大小与排列方式、分子的运动、分子力及其表现以及物体的内能问题.模型破解1. 分子动理论(i)物质是由大量的分子组成的物质由大量分子组成,而分子具有大小,它的直径数量级是10-10m,一般分子质量的数量级是10-26 kg分子间有空隙.阿伏伽德罗常数:l摩的任何物质含有的微粒数相同,这个数的测量值为NA = 6.021023mol-1阿伏伽德罗常数是个十分巨大的数字,分子的体积、质量都十分小,从而说明物质是由大量分子组成的估算分子大小或间距的两种模型.(a)球体模型:由于固体和液体分子间距离很小,因此可近似看成分子。
16、一模型界定本模型中涉及高中阶段中出现的电容器常见问题,包括动态分析、带电粒子在电容器间一类运动、直流含容电路、交流电路中的电容及暂态分析等.二模型破解电容器的充放电过程(i)电容器的充、放电图1充电:使电容器带电的过程,充电后电容器两板带上等量的异种电荷,电容器中储存电场能.放电:使充电后的电容器失去电荷的过程,放电过程中电场能转化为其他形式的能.(ii)电容器充电和放电过程的特点(I)充电过程的特点(如图1甲所示)有电流,电流方向流入正极板,电流由大到小.电容器所带电荷量增加.电容器两极板间电压升高.电容器间。
17、模型界定本模型主要归纳分子大小与排列方式、分子的运动、分子力及其表现以及物体的内能问题.模型破解1. 分子动理论(i)物质是由大量的分子组成的物质由大量分子组成,而分子具有大小,它的直径数量级是10-10m,一般分子质量的数量级是10-26 kg分子间有空隙.阿伏伽德罗常数:l摩的任何物质含有的微粒数相同,这个数的测量值为NA = 6.021023mol-1阿伏伽德罗常数是个十分巨大的数字,分子的体积、质量都十分小,从而说明物质是由大量分子组成的估算分子大小或间距的两种模型.(a)球体模型:由于固体和液体分子间距离很小,因此可近似看成分子。
18、一模型界定本模型中涉及高中阶段中出现的电容器常见问题,包括动态分析、带电粒子在电容器间一类运动、直流含容电路、交流电路中的电容及暂态分析等.二模型破解电容器的充放电过程(i)电容器的充、放电图1充电:使电容器带电的过程,充电后电容器两板带上等量的异种电荷,电容器中储存电场能.放电:使充电后的电容器失去电荷的过程,放电过程中电场能转化为其他形式的能.(ii)电容器充电和放电过程的特点(I)充电过程的特点(如图1甲所示)有电流,电流方向流入正极板,电流由大到小.电容器所带电荷量增加.电容器两极板间电压升高.电容器间。
19、本模型中涉及电表的结构与工作原理,电表的改装与校正,非理想电表的处理等 图 电流表构造图模型破解1.电流表的关键构造(1)蹄形磁铁和铁芯间的磁场是均匀地幅向分布的(2)铝框上绕有线圈,铝框的转轴上装有两个螺旋弹簧和一个指针2电流表的工作原理线圈中通有电流时,磁场对电流的安培力使线圈发生转动图 电流表工作原理图由于磁场是均匀幅向分布的,不论通电线自转到什么位置,线圈平面都跟磁感线平行,安培力的不随线圈所处的位置书生改变,只与通过的电流成正比当线圈转动时两弹簧产生阻碍其转动的作用(扭转力矩),此作用的大小与线圈。
20、专题 02 追赶模型模型界定本模型主要处理两物体能否追及的判定、距离极值的计算等问题.从时间和空间的角度来讲,追及相遇是指同一时刻两物体到达同一位置,包括两物体的运动轨迹在同一直线及不在同一直线上的情况。模型破解1.同一直线上的追及问题(i)空间条件:若同地出发,相遇时位移相等。若不是同地出发,通常需画出两物体运动过程示意图寻找位移联系。(ii)时间关系:同时出发且相遇时两物体还处于运动之中,则运动时间相等;不是同时出发时或相遇时两物体之一已停止运动,则运动时间一般不相等,需分析两物体的运动时间关系,如甲。