8.3 二元一次方程组的应用2

观图解题,密云县太师庄中学 王海梅,密云县太师庄中学 王海梅, 观图解题,动手试一试,用手头的木棍分别摆如下图所示的图形,请叙述你是怎样摆的?再数一数各用多少根木棍?,比比谁最快,1.图中共有 8 个连续六边形,每个六边形都是由 6 根长短相同的小棍摆成,请计算图中共有多少根小棍?,6根小棍,5,

8.3 二元一次方程组的应用2Tag内容描述:

1、 观图解题,密云县太师庄中学 王海梅,密云县太师庄中学 王海梅, 观图解题,动手试一试,用手头的木棍分别摆如下图所示的图形,请叙述你是怎样摆的?再数一数各用多少根木棍?,比比谁最快,1.图中共有 8 个连续六边形,每个六边形都是由 6 根长短相同的小棍摆成,请计算图中共有多少根小棍?,6根小棍,5,5,5,5,5,5,5,10,n,想一想 有没有其它算法,n-1,=6+5n-5 =5n+1,比比谁最快,1.图中共有 8 个连续六边形,每个六边形都是由 6 根长短相同的小棍摆成,请计算图中共有多少根小棍?,5,5,5,5,5,5,5,5,10,n,想一想 有没有其它算法,+1,2.图中共有 8 个连续正。

2、 二元一次方程组 通过对本节课的学习,你能够: 能够根据题意列出正确的方程并解决实际问题. 概 述 第 3 讲 知识点一知识点一 二元一次方程二元一次方程 1.二元一次方程定义:含有两个未知数,并且所含未知数的项的次数都是 1 的方程叫做二元一次方程 (1)二元一次方程的条件:整式方程;只含两个未知数;两个未知数系数都不为 0;含有未知数的 项的次数都是 1. (2)二。

3、83 实际问题与二元一次方程组【知识与技能】1会用二元一次方程组解决实际问题2用方程组的数学模型刻画现实生活中的实际问题【过程与方法】1培养学生应用方程解决实际问题的意识和应用数学的能力2将解方程组的技能训练与解决实际问题融为一体,进一步提高学生解方程组的技能【情感态度与价值观】1体会方程组是刻画现实世界的有效模型,培养应用数学的意识2在用方程组解决实际问题的过程中,体验数学的实用性,提高学习数学的兴趣3结合实际问题,让学生重视数学知识在实际生活中的应用重点:1.探索用方程组解决实际问题的过程2进一步体会数。

4、第8讲 二元一次方程组的解法及应用模块一 二元一次方程的基本概念定 义示例剖析二元一次方程:含有两个未知数,并且含未知数的项的最高次数是1的整式方程叫二元一次方程二元一次方程的一般形式:,二元一次方程的解:使二元一次方程左右两边的值相等的两。

5、8.3 实际问题与二元一次方程组,引入新课,探究1,养牛场原有30 只母牛和15只小牛,1天约需用饲料675kg;一周后又购进12只母牛和5只小牛,这时1天约需用饲料940kg.,探究新知,探究1,养牛场原有30 只母牛和15只小牛,1天约需用饲料675kg;一周后又购进12只母牛和5只小牛,这时1天约需用饲料940kg.,从调查中你获得了什么信息?,养牛场原有30 只母牛和15只小牛,1天约需用饲料675kg;一周后又购进12只母牛和5只小牛,这时1天约需用饲料940kg.,你能估计出平均每只母牛和每只小牛一天各需饲料多少千克吗?,探究新知,探究1,养牛场原有30 只母牛和15。

6、2.4二元一次方程组的应用,游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽。如果每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽比红色的多1倍,你知道男孩与女孩各有多少人吗?,1、问题中所求的未知数有几个? 2、有哪些等量关系? 3、怎样设未知数?可以列出几个方程? 4、本题能列一元一次方程求解吗?用列二元一次方程组的方法求解,有什么优点?,合作学习,两个,男孩人数女孩人数; 男孩人数(女孩人数),在刚才的过程中,你经历了哪些骤?,(审题,搞清已知和未知,分析数量关系)(考虑如何根据等量。

7、 应用二元一次方程组 第 13 讲 适用学科 初中数学 适用年级 初二 适用区域 北师版区域 课时时长(分钟) 120 知识点 鸡兔同笼 增收节支 里程碑上的数 教学目标 1、应用二元一次方程组解决实际问题 2、在解决实际问题的过程中,能用方程组这样的数学模型刻画现实世界. 教学重点 在实际问题中找等量关系,列方程组. 教学难点 在实际问题中找等量关系,列方程组. 【教。

8、1二元一次方程组的应用_1.掌握二元一次方程组的简单应用;2.掌握二元一次方程组应用题的解法;3.会找应用题中的等量关系.1 列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答” 五步,即:(1)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数;(2)找:找出能够表示题意两个相等关系;(3)列:根据这两个相等关系列出必需的代数式,从而列出方程组;(4)解:解这个方程组,求出两个未知数的值;(5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案2.列方程解应用题的基。

9、5.5 应用二元二次方程组应用二元二次方程组里程碑上的数里程碑上的数 一、选择题 1.已知甲、乙两数之和是 42,甲数的 3 倍等于乙数的 4 倍,求甲、乙两数.设甲数为 x, 乙数为 y,由题意可得方程组( ) A. yx yx 34 42 B. yx yx 43 42 C. 44 3 420 y yx D. 043 42 yx xy 2.甲、乙两条绳共长 17 m,。

10、5.3 应用二元一次方程组应用二元一次方程组鸡兔同笼鸡兔同笼 一、填空题一、填空题 1.已知甲库存粮 x吨,乙库存粮y吨.若从甲库调出 10吨给乙库,乙库的存粮 数是甲库存粮数的 2 倍,则以上用等式表示为_. 2.兄弟两人,弟弟五年后的年龄与哥哥五年前的年龄相等,3年后兄弟两人的 年龄和是他们年龄之差的 3 倍,则兄弟两人今年的岁数分别是_. 3.两抵相距 300 千米。

11、实际问题与二元一次方程组,例:2只大牛和1只小牛,1天需用饲料45 kg;21只大牛和10只小牛,1天需用饲料470 kg. 问一只大牛一只小牛每天各吃多少饲料? 3只大牛4只小牛每天吃多少饲料?,相等关系: (1)2只大牛1天所需饲料1只小牛1天所需饲料45千克; (2)21只大牛1天所需饲料10只小牛1天所需饲料470千克,2x+y=45 21x+10y=470,养牛场原有30只大牛和15只小牛,1天约需用饲料675 kg;一周后又购进12只大牛和5只小牛,这时1天约需要饲料940 kg饲养员李大叔估计平均每只大牛1天约需要饲料1820 kg,每只小牛1天约需要78 kg你能否通过计算检验。

12、,苏科数学,10.5 用二元一次方程组解决问题(2),苏科数学,问题1 如图,表格中的数量分别如下,你会填表吗?,10.5 用二元一次方程组解决问题(2),问题2 如果将表格中再加一行,你通过读表格来找 数量之间的关系吗?,10.5 用二元一次方程组解决问题(2),10.5 用二元一次方程组解决问题(2),问题3 某厂生产甲、乙两种型号的产品,生产甲种产品1个需用时8s、铜8g;生产乙种产品1个需用时6s、铜16g.如果生产甲、乙两种产品共用时1h、用铜6.4kg,那么甲、乙两种产品各生产多少个?,10.5 用二元一次方程组解决问题(2),1.表格如何设计? 2.如。

13、第1课时 利用二元一次方程组解决实际问题【教学目标】1使学生会借助二元一次方程组解决简单的实际问题,让学生再次体会二元一次方程组与现实生活的联系和作用2通过应用题教学使学生进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性3体会列方程组比列一元一次方程容易4进一步培养学生化实际问题为数学问题的能力和分析问题,解决问题的能力【教学重点与难点】1重点:能根据题意列二元一次方程组;根据题意找出等量关系;2难点:正确发找出问题中的两个等量关系【教学过程】一、复习列方程解应用题的步骤是什么?审题。

14、5.4 应用二元一次方程组应用二元一次方程组增收节支增收节支 1.某市现有 42 万人口,计划一年后城镇人口增加 0.8%,农村人口增加 1.1%,这样全市 人口将增加 1%,求这个市现在的城镇人口与农村人口? 设城镇人口是 x 万,农村人口是 y 万,根据题意填写下表,并列出方程组求 x、y 的值. 城镇 农村 全市 现有人数(万人) x y 42 一年后增加人口(万人) 2.某汽车制造厂接受。

15、第2课时利用二元一次方程组解决较复杂的问题1会列二元一次方程组解决图表信息问题;(难点)2会列二元一次方程组解决方案问题(难点)一、情境导入你能根据这对父子的对话内容,分别求出这两块农田今年的产量吗?二、合作探究探究点一:图表信息问题餐馆里把塑料凳整齐地叠放在一起(如图),根据图中的信息计算有20张同样塑料凳整齐地叠放在一起时的高度是_cm.解析:设塑料凳凳面的厚度为xcm,腿高hcm,根据题意得解得则20张塑料凳整齐地叠放在一起时的高度是2032080(cm)故答案是80.方法总结:在利用方程或方程组解决实际问题时,有时根据需要。

16、5.5 应用二元一次方程组里程碑上的数,第五章 二元一次方程组,八年级数学北师版,学习目标,1.利用二元一次方程解决数字问题和行程问题 (重点) 2.进一步经历和体验列方程组解决实际问题的过程.,1.一个两位数的十位数字是x,个位数字是y,则这个两位数可表示为:_ 2. 一个三位数,若百位数字为a,十位数字为b,个位数字为c,则这个三位数为:_.,导入新课,问题引入,10x+y,100a+10b+c,你能回答吗?,1用字母表示两位或两位以上的数 一个两位数,个位数字是a,十位数字是b,那么这个数可表示为_;如果交换个位和十位上的数字,那么得到一个新的。

17、,苏科数学,10.3解二元一次方程组(2),南京二十九中初级中学 金蓓,苏科数学,探索活动,问题1 解方程组,除了代入消元法,有没有其他消元方法?,苏科数学,探索活动,问题2 解方程组,苏科数学,探索活动,问题3 解方程组,苏科数学,三、数学运用,1、用加减消元法解下列方程组,【巩固练习】,苏科数学,三、数学运用,2、解下列二元一次方程组,【巩固练习】,苏科数学,四、小结思考,【拓展提升】解方程组 , 你能用几种方法解这个方程组?,。

18、5.4 应用二元一次方程组增收节支,第五章 二元一次方程组,八年级数学北师版,学习目标,1.会利用列表分析题中所蕴含的数量关系,列出二元一次方程组解决实际问题(重点) 2.进一步经历和体验列方程组解决实际问题的过程.,导入新课,情境引入,新年来临,爸爸想送ike一个书包和随身听作为新年礼物爸爸对ike说:“我在家乐福、人民商场都发现同款的随身听的单价相同,书包单价也相同,随身听和书包单价之和是452元,且随身听的单价比书包单价的4倍少8元,你能说出随身听和书包单价各是多少元,那么我就买给你做新年礼物”.你能帮助他吗?,1.一种商。

19、8.3 实际问题与二元一次方程组实际问题与二元一次方程组 第第 2 课时课时 建立二元一次方程组解决百分率问题建立二元一次方程组解决百分率问题 基础训练基础训练 知识点知识点 1 增长率问题增长率问题 1.在社会主义新农村建设中,某村积极响应党的号召,大力发动农户扩 大烟叶和蔬菜的种植面积,取得了较好的经济效益.今年该村的烟叶和 蔬菜的种植面积比去年增加了 800 亩,其中烟叶种植面积增加了 20%, 蔬菜种植面积增加了 30%,从而使该村的烟叶和蔬菜种植面积共达到 了 4 200 亩.问该村去年种植烟叶和蔬菜的面积各是多少亩? 2.在当地农业技。

20、8.3 实际问题与二元一次方程组,第一课时,第二课时,人教版 数学 七年级 下册,利用二元一次方程组解答实际问题,第一课时,返回,2,悟空顺风探妖踪,千里只行四分钟.,归时四分行六百,风速多少才称雄?,1.能够根据具体的数量关系,列出二元一次方程组解决简单的实际问题.,2.学会利用二元一次方程组解决几何、行程问题.,素养目标,3.经历用方程组解决实际图形问题的过程,体会方程组是刻画现实世界的有效数学模型.,养牛场原有30只大牛和15只小牛,1天约用饲料675 kg;一周后又购进12只大牛和5只小牛,这时1天约用饲料940 kg.饲养员李大叔估计每只。

【8.3 二元一次方程组的应用2】相关PPT文档
【8.3 二元一次方程组的应用2】相关DOC文档
标签 > 8.3 二元一次方程组的应用2[编号:174967]