5.1二次函数ppt课件

, 生活中的数学生活中的数学 篮球运行的路线是什么曲线?篮球运行的路线是什么曲线? 怎样出手才能把球投进篮圈?怎样出手才能把球投进篮圈? 起跳多高才能成功盖帽?等起跳多高才能成功盖帽?等 请用适当的函数表达式表示下列问题中的两个变量 y 与 X 之间的关系: (1)上下半场比赛开始时,各由一方在中圈

5.1二次函数ppt课件Tag内容描述:

1、 生活中的数学生活中的数学 篮球运行的路线是什么曲线?篮球运行的路线是什么曲线? 怎样出手才能把球投进篮圈?怎样出手才能把球投进篮圈? 起跳多高才能成功盖帽?等起跳多高才能成功盖帽?等 请用适当的函数表达式表示下列问题中的两个变量 y 与 X 之间的关系: (1)上下半场比赛开始时,各由一方在中圈开球 , 中圈是个圆,则圆的面积 y ( )与圆的半径 x ( cm ) 2 cm 2 yx 生活。

2、 3102 2 xxy 请说出该抛物线的开口方向、顶点坐标、请说出该抛物线的开口方向、顶点坐标、 对称轴对称轴 y=ax +bx+c =a( (x2+ x)+c a b =ax2+ x+ +c a b 2 2 a b 2 2 a b = a(x+ )2 + a b 2 a bac 4 4 2 y=ax +bx+c a bac a b xay 4 4 ) 2 ( 2 。

3、 知识回顾知识回顾: : 二次函数二次函数y=ax 的图象及其特点?的图象及其特点? 1、顶点坐标?、顶点坐标? (0,0) 2、对称轴?、对称轴? y轴(直线轴(直线x=0) 3、图象具有以下特点:、图象具有以下特点: 一般地,二次函数一般地,二次函数y=ax ( a0 )的图象是一条抛物线;的图象是一条抛物线; 当当a0 时,抛物线开口时,抛物线开口向上向上,顶点是抛物线上的,顶点。

4、,苏科数学,5.2 二次函数的图像和性质,请在同一坐标系中画出函数 和 、 和 的图像,画一画,函数 和 、 和 的图像各有什么特征,并与同学交流,这两个函数的图像都是抛物线,抛物线的开口向上,对称轴为y轴,顶点在原点,顶点是抛物线的最低点,看一看,这两个函数的图像都是抛物线,抛物线的开口向下,对称轴为y轴,顶点在原点,顶点是抛物线的最高点,说一说,函数 和 、 和 的图像各有什么特征,并与同学交流,1二次函数yax的图像是一条抛物线,抛物线的顶点在原点,对称轴为y轴,2当a0时,抛物线的开口向上,顶点是抛物线的最低点,3当a0时,抛物。

5、,苏科数学,5.2 二次函数的图像和性质,画函数图像步骤:,研究函数性质方法:数形结合,二次函数的图像是怎样的?,连线,列表,描点,试着画一画吧!,想一想,例1 画出函数yx2的图像,列表时自变量要 均匀和对称!,画一画,观察函数yx2图像,说出图像特征,抛物线关于y轴对称,当x0时,y随x增大而增大,抛物线开口向上,当x0时,y随x增大而减小,图像有最低点,过(0,0) y有最小值,议一议,例2 画出yx2图像,画一画,观察函数yx2图像,说出图像的特征,抛物线关于y轴对称,当x0时,y随x增大而减小,抛物线开口向下,当x0时,y随x增大而增大,图像有最高点,过(0。

6、,苏科数学,5.2 二次函数的图像和性质,函数yx22的图像与yx2的图像有什么关系?函数y (x3)2的图像和yx2的图像有什么关系?,yx22可以看成是yx2向上平移两个单位长度,y (x3)2可以看成是yx2向左平移三个单位长度,复习回顾,(1)应用结论,(2)观察图像: 函数y (x3)2 2有哪些性质?,y x2,y (x3)2,向左移 3个单位,y (x3)2 2,向上移 2个单位,yx2,y (x3)2,y (x3)22,变式:二次函数y (x1)2 6的图像和yx2的图像的位置有什么关系?,探索发现,y x22x3, (x1)22,由活动一可知:函数y (x1)22的图像可以看成yx2平移得到,即y x22x3是函数yx2先向左平移一个。

7、,苏科数学,5.5 用二次函数解决问题(1),用 16 m 长的篱笆围成矩形的养兔场饲养小兔,怎样围可使小兔的活动范围最大?,思考:,1.某种粮大户去年种植优质水稻360亩,平均每亩收益440元他计划今年多承租若干亩稻田预计原360亩稻田平均每亩收益不变,新承租的稻田每增加1亩,其每亩平均收益比去年每亩平均收益少2元该种粮大户今年应多承租多少亩稻田,才能使总收益最大?,问题一:,2.去年鱼塘里饲养鱼苗10千尾平均每千尾鱼的产量为1000kg今年计划继续向鱼塘里投放鱼苗,预计每多投放鱼苗1千尾,每千尾鱼的产量将减少50kg今年应投放鱼苗多少千。

8、,苏科数学,5.5 用二次函数解决问题(2),问题一:,河上有一座桥孔为抛物线形的拱桥,水面宽为6m时,水面离桥孔顶部3m因降暴雨水位上升1m,此时水面宽为多少(精确到0.1m)?,问题二:,闻名中外的赵州桥是我国隋朝工匠发明并建造的一座扁平抛物线形石拱桥,石拱桥跨径36m,拱高约8m试在恰当的平面直角坐标系中求出与该抛物线对应的二次函数解析式,练一练,下图是泰州某河上一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状,抛物线两端点与水面的距离都是1m,拱桥的跨度为10m,桥洞与水面的最大距离是5m,桥洞两侧壁上各有一盏距离水面4m的景。

9、,苏科数学,5.2 二次函数的图像和性质,你还记得二次函数yx2的图像是怎样的吗?,开口向上的抛物线,对称轴是y轴,顶点在原点.,y轴左边图像下降, y轴右边图像上升.,复习回顾,(1)列表,在同一坐标系中画出函数yx2和yx21的图像,从表格的数值看:对于同一个自变量 x 的取值,所对应的两个函数的函数值 y 有什么关系?,探索发现,(2)描点、连线,从对应点的位置看:函数yx21的图像和yx2的图像的位置有什么关系?,(3)根据图像,函数yx21的图像有哪些性质?,猜想:函数yx22的图像和y=x2的图像的位置有何关系?函数yx22的图像有哪些性质?,探索。

10、,苏科数学,5.4 二次函数与一元二次方程(1),(1)解一元一次方程x10; (2)画一次函数y x 1的图像,并指出函数y x 1的图像与x轴有几个交点; (3)一元一次方程x 1 0与一次函数y x 1有什么联系?,打高尔夫球时,球的飞行路线可以看成是一条抛物线,如果不考虑空气的阻力,某次球的飞行高度 y(单位:米)与飞行距离 x(单位:百米)满足二次函数 :y 5x2 20x,这个球飞行的水平距离最远是多少米?,y(米),x(百米),4,1,2,3,10,y=x2+2x,yx2 2x,图像与x轴有2个交点:,(2,0) (0,0),x22x0,b2 4ac0,,x1 2 , x2 0,二次函数与一元二次方程,。

11、,苏科数学,5.4 二次函数与一元二次方程(2),忆一忆,函数yx22x3的图像如图所示,你能看出方程x22x30的解吗?,函数yx22x1的图像如图所示,你能看出方程x22x10的解吗?,想一想,利用计算器进行探索,x 0.4,缩小它的范围,x 0.41,x 0.414,继续缩小它的范围,算一算,你能用同样的方法求方程的另一个根吗?试试看!,做一做,我们也可以用取中间值逼近的方法去求它的近似根,2x 3,2 x 2.5,2.25 x 2.5,2 x 2.5,继续逼近,2.375 x2.5,2.375 x2.4375,x2.4,继续逼近.,2,3,+,2.5,+,2.25,2.375,2x3,2x2.5,2.25x2.5,2.375x2.5,用线段表示逼近的过程,_,_,_,2.43。

12、 函数 y=ax2+bx+c基本性质回顾 二次函数二次函数y=ax2+bx+c(a0)的图像是一条抛物线的图像是一条抛物线, x y 0 2 -2 -2 2 -4 y x 0 2 4 6 -2 2 -4 4 y=2x24x6 y=0.75x2+3x y=0.5x22x1.5 y=4 9 x 2 8 3 x 6 观察下列二次函数图像:观察下列二次函数图像: 顶点在图像的位置有什么特点? 顶。

13、5.1 二次函数,九年级(下册),作 者:古 杨 (连云港市新海实验中学),初中数学,我们学习过的函数有哪几种?你能分别写出它们的表达形式吗?,复习回顾,5.1 二次函数,问题情境,水滴激起的波纹不断向外扩展,扩大的圆的周长C、面积S分别与半径r之间有怎样的函数关系?这两个函数表达式有何差异?,5.1 二次函数,问题探究,用16米长的篱笆围成矩形的生物园饲养小兔,怎样围可使小兔的活动范围较大?你能说清其中的道理吗?,设长方形的长为x米,则宽为(8x)米,矩形面积 y与长 x之间的函数关系式为: yx28x,5.1 二次函数,一面长与宽之比为2:1的矩形镜。

14、 请用适当的函数解析式表示下列问题情境中请用适当的函数解析式表示下列问题情境中 的两个变量的两个变量 y 与与 X 之间的关系之间的关系 (1)圆的面积圆的面积 y ( )与圆的半径与圆的半径 x ( Cm ) 2 cm y =x2 (2)王先生存人银行王先生存人银行2万元万元,先存一个一年定期,一年先存一个一年定期,一年 后银行将本息自动转存为又一个一年定期后银行将本息自动转存为又一个一年定期。

15、初中数学九年级下册,江苏科学技术出版社,二 次 函 数,沭阳如东实验学校初三数学组 吴国玺,课前准备:,方程:,函数:,一元一次方程:,一元二次方程:,反比例函数:,一次函数:,二 次 函 数,y=kx (k0),kx+b=0(k0),目标展示,二 次 函 数,1.理解二次函数的概念,掌握二次函数的表达形式.,2. 会写出实际问题的二次函数关系式,并确定它自变量的取值范围.,方程式,合作探究,2.某地要组织一次篮球联赛,赛制为单循环形式,计划安排21场比赛,则参赛球队数量?,变题,某地要组织一次篮球联赛,赛制为单循环形式,计划安排y场比赛,有x个参赛球队,那么y与x。

16、,苏科数学,5.1 二次函数,我们学习过哪几种函数?试写出它们的表达形式.,复习回顾,我们学习过哪几种函数?试写出它们的表达形式.,情境创设,用16米长的篱笆围成长方形的生物园饲养 小兔,怎样围可使小兔的活动范围较大?,探索活动,1长方形周长为16米,设长方形的一边长为 x米,将面积记为y平方米,写出变量y与x之间的 函数关系式2圆的面积s与半径r的函数关系式3某机械公司第一月销售50台,第三月销售 y台与月平均增长率x之间的关系式,探索1,1要给边长为x米的正方形房间铺设地板,已知某种地板的价格为每平方米240元,踢脚线的价格为每米30元。

【5.1二次函数ppt课件】相关PPT文档
22.3实际问题与二次函数(2)ppt习题课件
22.3实际问题与二次函数(3)ppt习题课件
1.1二次函数 (共23张PPT)
1.2二次函数的图像(3)ppt课件 (共14张PPT)
1.2二次函数的图像(2)ppt课件 (共18张PPT)
5.2二次函数的图像和性质(2)ppt课件
5.2二次函数的图像和性质(1)ppt课件
5.2二次函数的图像和性质(4)ppt课件
5.5用二次函数解决问题(1)ppt课件
5.5用二次函数解决问题(2)ppt课件
5.2二次函数的图像和性质(3)ppt课件
5.4二次函数与一元二次方程(1)ppt课件
5.4二次函数与一元二次方程(2)ppt课件
22.1.1二次函数ppt习题课件
1.3二次函数的性质 ppt课件
1.1二次函数ppt课件
5.1二次函数ppt课件
标签 > 5.1二次函数ppt课件[编号:111782]