2021年高考数学大二轮专题复习数列之数列的综合问题

2021 年高三数学二轮复习讲练测之年高三数学二轮复习讲练测之讲讲案案 专题专题 15 函数、数列、三角函数中大小比较问题函数、数列、三角函数中大小比较问题 纵观近几年高考对于大小比较问题的考查,重点放在与函数、数列、三角函数的大小比较问题上,要求学 生有较强的推理能力和准确的计算能力,才能顺利解答

2021年高考数学大二轮专题复习数列之数列的综合问题Tag内容描述:

1、2021 年高三数学二轮复习讲练测之年高三数学二轮复习讲练测之讲讲案案 专题专题 15 函数、数列、三角函数中大小比较问题函数、数列、三角函数中大小比较问题 纵观近几年高考对于大小比较问题的考查,重点放在与函数、数列、三角函数的大小比较问题上,要求学 生有较强的推理能力和准确的计算能力,才能顺利解答,从实际教学来看,这部分知识是学生掌握最为模糊, 看到就头疼的题目分析原因,除了这类题目的入手确实不。

2、2021 年高三数学二轮复习讲练测之练案年高三数学二轮复习讲练测之练案 专题专题 15 函数、数列、三角函数中大小比较问题函数、数列、三角函数中大小比较问题 一、练高考一、练高考 1【2020 年高考山东卷 11】已知 0a , 0b ,且 1ab ,则 ( ) A 22 1 2 ab B 1 2 2 a b C 22 loglog2ab D 2ab 【答案】ABD 【思路导引】根据1ab,。

3、专题五专题五 立体几何与空间向量立体几何与空间向量 第二编 讲专题 第第3 3讲讲 立体几何中的向量方法立体几何中的向量方法 考情研析 以空间几何体为载体考查空间角是高考命题的重点,常 与空间线面关系的证明相结合,热点为线面角、二面角的求解,均以解答题 的形式进行考查,难度主要体现在建立空间直角坐标系和准确计算上 1 核心知识回顾核心知识回顾 PART ONE 核心知识回顾核心知识回顾 。

4、专题五专题五 立体几何与空间向量立体几何与空间向量 第二编 讲专题 第第2 2讲讲 空间中的平行与垂直空间中的平行与垂直 考情研析 1.从具体内容上:以选择题、填空题的形式考查,主 要利用平面的基本性质及线线、 线面和面面平行和垂直的判定定理与性质定 理对命题的真假进行判断,属于基础题;以解答题的形式考查,主要是对 线线、线面与面面平行和垂直关系交汇综合命题,且多以棱柱、棱锥、棱台 或其简单组合。

5、专题二专题二 函数与导数函数与导数 第二编 讲专题 第第1 1讲讲 函数的图象与性质函数的图象与性质 考情研析 1.对函数图象的考查主要有两个方面:一是识图,二是 用图,即利用函数的图象,通过数形结合的思想解决有关函数性质的问 题 2.求函数零点所在的区间、零点的个数及参数的取值范围是高考的常 见题型,主要以选填题的形式出现 1 核心知识回顾核心知识回顾 PART ONE 核心知识回顾核心。

6、第 3 讲 导数的热点问题 考情研析 利用导数探求函数的极值、最值是函数的基本问题,高考中常与函数的零 点、方程的根及不等式相结合,难度较大解题时要注意分类讨论思想和转化与化归思想的应 用 核心知识回顾 1.利用导数解决与函数有关的方程根的问题 (1)利用导数研究高次式、分式、指数式、对数式方程根的个数问题的一般思路 将问题转化为函数 01零点的个数问题,进而转化为函数图象02交点的个数问题; 利。

7、专题专题 06 数列的综合数列的综合(一一) 专题点拨专题点拨 1若an是公差为 d 的等差数列,则 d0 时,an是递增数列; 0d 时,an是递减数列;d0 时,an是常数列 等差数列的通项公式ana1(n1)d(n1)可推广为数列通项公式anam(nm)d(m, nN*且nm) 若 mnpq,则 amanapaq(m,n,p,qN*),当an是有穷数列,则与首末两项等距离的 两项之和,等于首末两项之和 项数成等差数列,则相应的项也成等差数列,即 ak,akm,ak2m,(k,mN*)成等差数列 2设 Sn是等差数列an的前 n 项和,则 Sk,S2kSk,S3kS2k,构成的数列是等差数列; Sn n 也是一个等差数列; 。

8、专题专题 07 数列的综合数列的综合(二二) 专题点拨专题点拨 1.设Sn是等差数列an的前n项和,则 Sk,S2kSk,S3kS2k,构成的数列是等差数列; Sn n 也是一个等差数列; 2设等比数列an的首项为a1,公比为q,当q1,a10 或 00,a76 时,|a1|a2|an|a1a2a6a7a8an S6(SnS6)2S6Sn11437 2 n3 2n 2. 数列|an|的前 n 项和 Sn 37 2 n3 2n 2 (n6), 11437 2 n3 2n 2 (n6). 【变式训练 1】已知 Sn为数列an的前 n 项和,且 Sn12n2n,n0,1,2,求 an. 【解析】an1Sn1Sn2n2n2(n1)2(n1)4n214n1(n1), 当 n1 时,a23,所以 an14n1,nN*. 当 n0 时,a1S10,。

9、第 3 讲 圆锥曲线的综合问题 考情研析 1.圆锥曲线的综合问题一般以直线和圆锥曲线的位置关系为载体,以参数 处理为核心,考查范围、最值问题,定点、定值问题,探索性问题 2.试题解答往往要综合 应用函数与方程、 数形结合、 分类讨论等多种思想方法, 对计算能力也有较高要求, 难度较大 核心知识回顾 1.最值问题 求解最值问题的基本思路是选择变量, 建立求解目标的函数解析式, 然后利用函数的性质、 。

10、专题二专题二 函数与导数函数与导数 第二编 讲专题 第第3 3讲讲 导数的热点问题导数的热点问题 考情研析 利用导数探求函数的极值、最值是函数的基本问题,高 考中常与函数的零点、方程的根及不等式相结合,难度较大解题时要注意 分类讨论思想和转化与化归思想的应用 1 核心知识回顾核心知识回顾 PART ONE 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题VS押题押题 专题作业。

11、 数列类解答题数列类解答题 (12 分)已知各项均不为零的数列an的前 n 项和为 Sn,且对任意的 nN*,满足 Sn1 3a1(an1). (1)求数列an的通项公式; (2)设数列bn满足 anbnlog2an,数列bn的前 n 项和为 Tn,求证:Tn8 9. 解题思路 (1)根据 SnSn1an(n2)及递推关系式化简得 an和 an1的关系式, 从而求出 an;(2)采用错位相。

12、专题六专题六 解析几何解析几何 第二编 讲专题 第第3 3讲讲 圆锥曲线的综合问题圆锥曲线的综合问题 考情研析 1.圆锥曲线的综合问题一般以直线和圆锥曲线的位置关 系为载体,以参数处理为核心,考查范围、最值问题,定点、定值问题,探 索性问题 2.试题解答往往要综合应用函数与方程、数形结合、分类讨论 等多种思想方法,对计算能力也有较高要求,难度较大 1 核心知识回顾核心知识回顾 PART ON。

13、第 1 讲 等差数列与等比数列 考情研析 1.从具体内容上,主要考查等差数列、等比数列的基本计算和基本性质及 等差、等比数列中项的性质、判定与证明 2.从高考特点上,难度以中、低档题为主,一般 设置一道选择题和一道解答题 核心知识回顾 1.等差数列 (1)通项公式: 01ana1(n1)dam(nm)d (2)等差中项公式: 022anan1an1(nN*,n2) (3)前 n 项和公式: 03S。

14、4.2 数列大题,-2-,-3-,-4-,1.由递推关系式求数列的通项公式 (1)形如an+1=an+f(n),利用累加法求通项. (2)形如an+1=anf(n),利用累乘法求通项. (3)形如an+1=pan+q,等式两边同时加 转化为等比数列求通项. 2.数列求和的常用方法 (1)公式法:利用等差数列、等比数列的求和公式. (2)错位相减法:适合求数列anbn的前n项和Sn,其中an,bn一个是等差数列,另一个是等比数列. (3)裂项相消法:即将数列的通项分成两个式子的代数和,通过累加抵消中间若干项的方法. (4)拆项分组法:先把数列的每一项拆成两项(或多项),再重新组合成两个(或多个)简单的数列,最后分。

15、第 2 讲 数列求和问题 考情研析 1.从具体内容上,高考对数列求和的考查主要以解答题的形式出现,通过 分组转化、错位相减、裂项相消等方法求一般数列的和,体现转化与化归的思想 2.从高考 特点上,难度稍大,一般以解答题为主 核心知识回顾 常见的求和方法 (1)公式法:适合求等差数列或等比数列的前 n 项和对等比数列利用公式法求和时,一 定要注意 01公比 q 是否取 1 (2)错位相减法:主要用于。

16、专题四专题四 数列数列 第二编 讲专题 规范答题系列三规范答题系列三 数列类解答题 (12 分)已知各项均不为零的数列an的前 n 项和为 Sn,且对任 意的 nN*,满足 Sn1 3a1(an1). (1)求数列an的通项公式; 解 (1)当 n1 时,a1S11 3a1(a11) 1 3a 2 11 3a1, a10,a14.(2 分) Sn4 3(an1),当 n2 时,Sn1 4。

17、专题四专题四 数列数列 第二编 讲专题 第第1 1讲讲 等差数列与等比数列等差数列与等比数列 考情研析 1.从具体内容上,主要考查等差数列、等比数列的基本 计算和基本性质及等差、等比数列中项的性质、判定与证明 2.从高考特 点上,难度以中、低档题为主,一般设置一道选择题和一道解答题 1 核心知识回顾核心知识回顾 PART ONE 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真。

18、第 3 讲 数列的综合问题 考情研析 1.从具体内容上, 数列的综合问题主要考查: 数列与函数、 不等式结合, 探求数列中的最值或证明不等式;以等差数列、等比数列为背景,利用函数观点探求参数的 值或范围 2.从高考特点上,常在选填题型的最后两题及解答题第 17 题中出现 核心知识回顾 数列的综合问题 (1)以数列知识为纽带,在数列与函数、方程、不等式的交汇处命题,主要考查利用函数 观点、不等式的方。

19、专题四专题四 数列数列 第二编 讲专题 第第2 2讲讲 数列求和问题数列求和问题 考情研析 1.从具体内容上,高考对数列求和的考查主要以解答题 的形式出现,通过分组转化、错位相减、裂项相消等方法求一般数列的和, 体现转化与化归的思想 2.从高考特点上,难度稍大,一般以解答题为主 1 核心知识回顾核心知识回顾 PART ONE 核心知识回顾核心知识回顾 热点考向探究热点考向探究 真题真题。

20、专题四专题四 数列数列 第二编 讲专题 第第3 3讲讲 数列的综合问题数列的综合问题 考情研析 1.从具体内容上,数列的综合问题主要考查:数列与 函数、不等式结合,探求数列中的最值或证明不等式;以等差数列、等比 数列为背景,利用函数观点探求参数的值或范围 2.从高考特点上,常在 选填题型的最后两题及解答题第 17 题中出现 1 核心知识回顾核心知识回顾 PART ONE 核心知识回顾核心知。

【2021年高考数学大二轮专题】相关PPT文档
【2021年高考数学大二轮专题】相关DOC文档
标签 > 2021年高考数学大二轮专题复习数列之数列的综合问题[编号:120117]