课时规范练(授课提示:对应学生用书第 305 页)A 组 基础对点练1已知点 M(a,b)在圆 O:x 2y 21 外,则直线 axby 1 与圆 O 的位置关系是( B )A相切 B相交C相离 D不确定2设 P 是圆( x3) 2( y1) 24 上的动点,Q 是直线 x3 上的动点,则| PQ|
2020年高考理科数学新课标第一轮总复习练习8_8曲线与方程Tag内容描述:
1、课时规范练(授课提示:对应学生用书第 305 页)A 组 基础对点练1已知点 M(a,b)在圆 O:x 2y 21 外,则直线 axby 1 与圆 O 的位置关系是( B )A相切 B相交C相离 D不确定2设 P 是圆( x3) 2( y1) 24 上的动点,Q 是直线 x3 上的动点,则| PQ|的最小值为( B )A6 B4C3 D23直线 3x 4yb 与圆 x2y 22x2y 10 相切,则 b 的值是( D )A2 或 12 B2 或12C 2 或12 D2 或 124圆 x22xy 24y30 上到直线 xy 10 的距离为 的点共有( C )2A1 个 B2 个C3 个 D4 个解析:圆的方程可化为(x1) 2(y2) 28,圆心(1,2)到直线的距离 d ,半径是 2 ,结合图形可知有 3 个。
2、课时规范练(授课提示:对应学生用书第 317 页)A 组 基础对点练1已知点 A(0,2),椭圆 E: 1(ab0)的离心率为 ,F 是椭圆 Ex2a2 y2b2 32的右焦点,直线 AF 的斜率为 ,O 为坐标原点233(1)求 E 的方程;(2)设过点 A 的动直线 l 与 E 相交于 P,Q 两点,当OPQ 的面积最大时,求 l的方程解析:(1)设 F(c,0),由条件知, ,得 c .2c 233 3又 ,所以 a2,b 2a 2c 21.ca 32故 E 的方程为 y 21.x24(2)当 lx 轴时不合题意,故设 l:ykx2,P(x 1, y1),Q(x 2,y 2),将 ykx2 代入 y 21 得x24(14k 2)x216kx120.当 16(4k 23)0,即 k2 时,x 1,2 .34 8k。
3、课时规范练(授课提示:对应学生用书第 303 页)A 组 基础对点练1圆心为(1,1) 且过原点的圆的方程是( D )A(x1) 2(y1) 21B(x1) 2(y1) 21C(x1) 2(y1) 22D(x1) 2(y1) 222直线 x2 y2k0 与直线 2x3yk 0 的交点在圆 x2y 29 的外部,则k 的取值范围为 ( A )Ak B 34 34 34 343已知圆 C1:(x 2) 2 (y3) 21,圆 C2:(x3) 2(y4) 29,M,N 分别是圆 C1, C2 上的动点, P 为 x 轴上的动点,则|PM| |PN |的最小值为( B )A62 B5 42 2C. 1 D17 174点 P(4, 2)与圆 x2 y24 上任一点连线的中点的轨迹方程是( A )A(x2) 2(y1) 21B(x2) 2(y1) 24C(x4) 2(y2) 24D(。
4、课时规范练(授课提示:对应学生用书第 311 页)A 组 基础对点练1抛物线 y 4x2 的焦点坐标是 ( C )A. B(1,0)(116,0)C. D(0,1)(0,116)2过抛物线 y24x 的焦点的直线 l 交抛物线于 P(x1,y 1),Q (x2,y 2)两点,如果x1x 26,则|PQ|( B )A9 B8C7 D63已知点 F 是抛物线 C:y 24x 的焦点,点 A 在抛物线 C 上,若| AF|4,则线段 AF 的中点到抛物线 C 的准线的距离为( B )A4 B3C2 D14已知抛物线 C:y 2x 的焦点为 F,A(x 0,y 0)是 C 上一点,|AF| x0,则54x0( C )A4 B2C1 D85O 为坐标原点,F 为抛物线 C:y 24 x 的焦点,P 为 C 上一点,若|PF|。
5、课时规范练(授课提示:对应学生用书第 309 页)A 组 基础对点练1已知 F 为双曲线 C:x 2my 23m(m0) 的一个焦点,则点 F 到 C 的一条渐近线的距离为( A )A. B33C. m D 3m32已知双曲线 1( a0)的离心率为 2,则 a( D )x2a2 y23A2 B62C. D 1523等轴双曲线 C 的中心在原点,焦点在 x 轴上, C 与抛物线 y216x 的准线交于 A,B 两点,| AB|4 ,则 C 的实轴长为( C )3A. B22 2C4 D 84双曲线 x24y 21 的渐近线方程为 ( A )Ax2 y0 By2x 0Cx4y0 D y4x05(2018开封模拟 )已知 l 是双曲线 C: 1 的一条渐近线,P 是 l 上的一x22 y24点,F 1,F 2 是 C 的。
6、课时规范练(授课提示:对应学生用书第 313 页)A 组 基础对点练1若方程 x2 1(a 是常数 ),则下列结论正确的是 ( B )y2aA任意实数 a,方程表示椭圆B存在实数 a,方程表示椭圆C任意实数 a,方程表示双曲线D存在实数 a,方程表示抛物线2设点 A 为圆( x1) 2y 21 上的动点,PA 是圆的切线,且|PA| 1,则点 P的轨迹方程是( D )Ay 22x B(x1) 2y 24Cy 22x D(x1) 2y 22解析:如图,设 P(x,y),圆心为 M(1,0),连接 MA,则 MAPA,且|MA |1,又 |PA|1,|PM| ,|MA|2 |PA|2 2即|PM| 22, (x1) 2y 22.3在平面直角坐标系中,O 为坐标原点,A(1,0),B(2,2。