2.3利用一元二次方程解决面积问题第2课时课件

第 3 课时 用一元二次方程解决几何图形问题01 基础题 知识点 1 一般图形的问题1(衡阳中考)绿苑小区在规划设计时,准备在两幢楼房之间设置一块面积为 900 平方米的矩形绿地,并且长比宽多 10 米设绿地的宽为 x 米,根据题意,可列方程为(B)Ax(x10) 900 Bx(x10) 900C1

2.3利用一元二次方程解决面积问题第2课时课件Tag内容描述:

1、第 3 课时 用一元二次方程解决几何图形问题01 基础题 知识点 1 一般图形的问题1(衡阳中考)绿苑小区在规划设计时,准备在两幢楼房之间设置一块面积为 900 平方米的矩形绿地,并且长比宽多 10 米设绿地的宽为 x 米,根据题意,可列方程为(B)Ax(x10) 900 Bx(x10) 900C10(x10)900 D2x(x 10)9002(山西农业大学附中月考)从一块正方形的木板上锯掉 2 m 宽的长方形木条,剩下的面积是 48 m2,则原来这块木板的面积是 (B)A100 m 2 B64 m 2C121 m 2 D144 m 23一个直角三角形的两条直角边相差 5 cm,面积是 7 cm2,则它的两条直角边长分别为2_cm,7_c。

2、2.6 应用一元二次方程,第二章 一元二次方程,第2课时 营销问题及平均变化率问题,导入新课,讲授新课,当堂练习,课堂小结,1.会用一元二次方程的方法解决营销问题及平均变化率 问题.(重点、难点) 2.进一步培养学生化实际问题为数学问题的能力及分析问 题解决问题的能力,学习目标,导入新课,问题引入,小明学习非常认真,学习成绩直线上升,第一次月考数学成绩是80分,第二次月考增长了10%,第三次月考又增长了10%,问他第三次数学成绩是多少?,例1 :新华商场销售某种冰箱,每台进价为2500元.市场调研表明:当销售价为2900元时,平均每天能售出8台。

3、课前准备,同学们,课本、练习本、笔,你准备好了吗?,第2章 一元二次方程 2.3 一元二次方程的应用(1),因式分解法 开平方法 配方法 公式法,解一元二次方程的四种方法:,课前回顾,例1 某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.当每盆植入3株时,平均单株盈利3元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到10元,每盆应该植多少株?,情境导入,学了这么多方法,我们来试着将它们应用到生活中吧!,审题:理解题意。 设元(未知数)。 用含未知数的代数式表示相关的量。 。

4、课前准备,同学们,课本、练习本、笔,你准备好了吗?,第2章 一元二次方程 2.3 一元二次方程的应用(2),列方程解应用题的一般步骤:,即审题,找出题中的量,分清有哪些已知量、未知量,哪些是要求的未知量和所涉及的基本数量关系、相等关系。,设元,包括设直接未知数或间接未知数,以及用含未知数的代数式表示其他相关量。,根据等量关系列出方程。,解方程。,检验根的准确性及是否符合实际意义。,总结,课前回顾,(1)增长率问题,(2)降低率问题,课前回顾,例1 如图甲,有一张长40cm,宽25cm的长方形硬纸片,裁去角上四个小正方形之后,折成。

5、2.3 用公式法求解一元二次方程,第二章 一元二次方程,第2课时 利用一元二次方程解决面积问题,导入新课,讲授新课,当堂练习,课堂小结,1.能够建立一元二次方程模型解决有关面积的问题. (重点、难点) 2.能根据具体问题的实际意义检验结果的合理性.(难点),学习目标,问题1:解一元二次方程我们学过哪几种方法?,直接开平方法 ,配方法,公式法 .,问题2:请某小区规划在一个长30m、宽20m的长方形土地上修建三条等宽的通道,使其中两条与AB平行,另外两条与AD平行,其余部分种花草,要使每一块花草的面积都为78m2,那么通道宽应该设计为多少?设。

标签 > 2.3利用一元二次方程解决面积问题第2课时课件[编号:107488]