2.2.1 平面向量基本定理 学案含答案

2.1 平面向量的实际背景及基本概念平面向量的实际背景及基本概念 学习目标 1.能结合物理中的力、位移、速度等具体背景认识向量,掌握向量与数量的区别. 2.会用有向线段作向量的几何表示,了解有向线段与向量的联系与区别,会用字母表示向量. 3.理解零向量、单位向量、平行向量、共线向量、相等向量及向量

2.2.1 平面向量基本定理 学案含答案Tag内容描述:

1、 2.1 平面向量的实际背景及基本概念平面向量的实际背景及基本概念 学习目标 1.能结合物理中的力、位移、速度等具体背景认识向量,掌握向量与数量的区别. 2.会用有向线段作向量的几何表示,了解有向线段与向量的联系与区别,会用字母表示向量. 3.理解零向量、单位向量、平行向量、共线向量、相等向量及向量的模等概念,会辨识图形 中这些相关的概念 知识点一 向量的概念 1向量:既有大小,又有方向的量叫做。

2、6.3 平面向量基本定理及坐标表示平面向量基本定理及坐标表示 6.3.1 平面向量基本定理平面向量基本定理 学习目标 1.理解平面向量基本定理,了解向量的一组基底的含义.2.在平面内,当一组基 底选定后, 会用这组基底来表示其他向量.3.会应用平面向量基本定理解决有关平面向量的综 合问题. 知识点 平面向量基本定理 1.平面向量基本定理:如果 e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的 任一向量 a,有且只有一对实数 1,2,使 a1e12e2. 2.基底:若 e1,e2不共线,我们把e1,e2叫做表示这一平面内所有向量的一个基底. 1.平面。

3、 5.2 平面向量基本定理及坐标表示平面向量基本定理及坐标表示 最新考纲 考情考向分析 1.了解平面向量基本定理及其意义 2.掌握平面向量的正交分解及其坐标表示 3.会用坐标表示平面向量的加法、 减法与数 乘运算 4.理解用坐标表示的平面向量共线的条件. 主要考查平面向量基本定理、向量加法、减法、 数乘向量的坐标运算及平面向量共线的坐标表 示, 考查向量线性运算的综合应用, 考查学生的 运算推理能力、 数形结合能力, 常与三角函数综 合交汇考查, 突出向量的工具性 一般以选择题、 填空题形式考查, 偶尔有与三角函数综合在一起 考查。

4、2.3向量的坐标表示23.1平面向量基本定理一、选择题1如图所示,矩形ABCD中,5e1,3e2,则等于()A.(5e13e2)B.(5e13e2)C.(3e25e1)D.(5e23e1)考点平面向量基本定理题点用基底表示向量答案A解析()()(5e13e2)2如图所示,用向量e1,e2表示向量ab为()A4e12e2 B2e14e2Ce13e2 D3e1e2考点平面向量基本定理题点用基底表示向量答案C3已知非零向量,不共线,且2xy,若(R),则x,y满足的关系是()Axy20 B2xy10Cx2y20 D2xy20答案A4已知A,B,D三点共线,且对任一点C,有,则等于()A. B. C D答案C解析因为A,B,D三点共线,所以存在实数t,使t,则t()所以t。

5、3.2平面向量基本定理一、选择题1如图所示,矩形ABCD中,5e1,3e2,则等于()A.(5e13e2)B.(5e13e2)C.(3e25e1)D.(5e23e1)答案A解析()()(5e13e2)2如图所示,用向量e1,e2表示向量ab为()A4e12e2 B2e14e2Ce13e2 D3e1e2答案C解析如图,由向量的减法得ab.由向量的加法得e13e2.3若1a,2b,2(1),则等于()Aab Ba(1)bCab D.ab答案D解析2,1(2),(1)12,12ab.4设点D为ABC中BC边上的中点,O为AD边上靠近点A的三等分点,则()A.B.C.D.答案D解析依题意,得(),故选D.5已知A。

6、 2.3 平面向量的基本定理及坐标表示平面向量的基本定理及坐标表示 23.1 平面向量基本定理平面向量基本定理 一、选择题 1如图所示,矩形 ABCD 中,BC 5e 1,DC 3e2,则OC 等于( ) A.1 2(5e13e2) B.1 2(5e13e2) C.1 2(3e25e1) D.1 2(5e23e1) 考点 平面向量基本定理 题点 用基底表示向量 答案 A 解析 OC 1 2AC。

7、6.36.3 平面向量基本定理及坐标表示平面向量基本定理及坐标表示 6 6. .3.13.1 平面向量基本定理平面向量基本定理 1多选若e1,e2是平面内的一个基底,则下列四组向量中不能作为平面向量的基底的是 Ae1e2,e2e1 B2e1。

8、6 6. .3 3 平面向量基本定理及坐标表示平面向量基本定理及坐标表示 6 6. .3.13.1 平面向量基本定理平面向量基本定理 基础达标 一选择题 1.设 e1,e2是同一个平面内的两个向量,则有 A.e1,e2平行 B.e1,e2的。

9、微专题突破四平面向量基本定理的应用平面向量既具有数量特征,又具有图形特征,学习向量的应用,可以启发同学们从新的视角去分析、解决问题,有益于培养创新能力.下面就以几道例题为例进行说明.例1已知,其中1.求证:A,B,C三点共线.证明如图,由1得1,则(1).(),A,B,C三点共线.点评(1)此题揭示了证明三点共线的又一向量方法,点O具有灵活性;(2)此命题反之也成立(证明略):若A,B,C三点共线,则存在唯一实数对,满足,且1.揭示了三点共线的又一个性质;(3)特别地,当时,(),点B为AC的中点,揭示了OAC中线OB的一个向量公式,应用广泛。

10、微专题突破五平面向量基本定理的应用平面向量既具有数量特征,又具有图形特征,学习向量的应用,可以启发同学们从新的视角去分析、解决问题,有益于培养创新能力下面就以几道习题为例进行说明例1已知,其中1.求证:A,B,C三点共线考点平面向量基本定理题点用基底表示向量证明如图,由1得1,则(1).(),A,B,C三点共线点评1.此题揭示了证明三点共线的又一向量方法,点O具有灵活性;2反之也成立(证明略):若A,B,C三点共线,则存在唯一实数对,满足,且1.揭示了三点共线的又一个性质;3特别地,当时,(),点B为AC的中点,揭示了OAC中线OB。

11、 2.3 平面向量的基本定理及坐标表示平面向量的基本定理及坐标表示 23.1 平面向量基本定理平面向量基本定理 学习目标 1.理解平面向量基本定理的内容,了解向量的一组基底的含义.2.在平面内,当一 组基底选定后,会用这组基底来表示其他向量.3.会应用平面向量基本定理解决有关平面向量 的综合问题 知识点一 平面向量基本定理 1平面向量基本定理:如果 e1,e2是同一平面内的两个不共线向量,那么对。

12、2.3向量的坐标表示2.3.1平面向量基本定理基础过关1.设e1,e2是平面内所有向量的一组基底,则下列向量中,不能作为基底的是()A.e1e2和e2 B.3e14e2和6e18e2C.e12e2和2e1e2 D.e1和e1e2解析B中,6e18e22(3e14e2),(6e18e2)(3e14e2),3e14e2和6e18e2不能作为基底,其它都可以.答案B2.若D点在ABC的边BC上,且4rs,则3rs的值为()A. B. C. D.解析4rs,()rs,r,s.3rs.答案C3.已知向量e1,e2不共线,实数x,y满足(3x4y)e1(2x3y)e26e13e2,则xy的值为_.解析(3x4y)e1(2x3y)e26e13e2,且e1,e2不共线,解得xy633.答案34.已知e1,e2不共线,a。

13、3.2平面向量基本定理基础过关1设O是平行四边形ABCD两对角线的交点,下列向量组:与;与;与;与,其中可作为表示这个平行四边形所在平面内所有向量的基底的是()ABCD解析由基底的定义知中两向量不共线,可以作为基底答案B2如图所示,在矩形ABCD中,5e1,3e2,则= ()A.(5e13e2) B.(5e13e2)C.(3e25e1) D.(5e23e1)解析()(5e13e2)答案A3在四边形ABCD中,a2b,4ab,5a3b,则四边形ABCD的形状是()A长方形B平行四边形C菱形D梯形解析8a2b2 ,故为梯形答案D4已知10,20,e1,e2是一组基底,且a1e12e2,则a与e1_,a与e2_(填共线或不共线)解析若a与e1。

14、 2.3 平面向量的基本定理及坐标表示平面向量的基本定理及坐标表示 2.3.1 平面向量基本定理平面向量基本定理 基础过关 1若 e1,e2是平面内的一组基底,则下列四组向量能作为平面向量的基底的是( ) Ae1e2,e2e1 B2e1e2,e11 2e2 C2e23e1,6e14e2 De1e2,e1e2 解析 选项 A 中,e1e2(e2e1),即 e1e2与 e2e1共线,不能作为基底;选项。

15、6.3.1 平面向量基本定理平面向量基本定理 A 组 素养自测 一选择题 1 e1 e2是表示平面内所有向量的一组基底, 下列四组向量中, 不能作为一组基底的是 Ae1e2和 e1e2 B3e12e2和 4e26e1 Ce12e2和 e22。

16、3.2平面向量基本定理学习目标1.理解平面向量基本定理的内容,了解向量的一组基底的含义.2.在平面内,当一组基底选定后,会用这组基底来表示其他向量.3.会应用平面向量基本定理解决有关平面向量的综合问题知识点平面向量基本定理1平面向量基本定理如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,存在唯一一对实数1,2,使a1e12e2.2基底平面内不共线的向量e1,e2叫作表示这一平面内所有向量的一组基底1平面内任意两个向量都可以作为平面内所有向量的一组基底()提示只有不共线的两个向量才可以作为基底2零向量可以。

17、2.3向量的坐标表示23.1平面向量基本定理学习目标1.理解平面向量基本定理的内容,了解平面向量的正交分解及向量的一组基底的含义.2.在平面内,当一组基底选定后,会用这组基底来表示其他向量.3.会应用平面向量基本定理解决有关平面向量的综合问题知识点一平面向量基本定理1平面向量基本定理:如果e1,e2是同一平面内两个不共线的向量,那么对于这一平面内的任一向量a,有且只有一对实数1,2,使a1e12e2.2基底:不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底知识点二向量的正交分解一个平面向量用一组基底e1,e2表示成a1e12e2的。

18、2.2向量的分解与向量的坐标运算2.2.1平面向量基本定理一、选择题1.设e1,e2是平面内所有向量的一组基底,则下列四组向量中,不能作为基底的是()A.e1e2和e1e2 B.3e14e2和6e18e2C.e12e2和2e1e2 D.e1和e1e2答案B解析B中,6e18e22(3e14e2),(6e18e2)(3e14e2),3e14e2和6e18e2不能作为基底.2.如图所示,用向量e1,e2表示向量ab为()A.4e12e2 B.2e14e2C.e13e2D.3e1e2答案C解析如图,由向量的减法得ab.由向量的加法得e13e2.3.设向量e1和e2是某一平面内所有向量的一组基底,若3xe1(10y)e2(4y7)e12xe2,则实数y的值为()A.3 B.4 C. D.答案B解析因为3x。

19、22向量的分解与向量的坐标运算22.1平面向量基本定理基础过关1若e1,e2是平面内的一组基底,则下列四组向量能作为平面向量的基底的是()Ae1e2,e2e 1 B2e1e2,e1e2C2e23e1,6e14e2 De1e2,e1e2答案D解析选项A、B、C中的向量都是共线向量,不能作为平面向量的基底2下面三种说法中,正确的是()一个平面内只有一对不共线向量可作为表示该平面所有向量的基底;一个平面内有无数多对不共线向量可作为该平面所有向量的基底;零向量不可作为基底中的向量ABCD答案B3若a、b不共线,且ab0(,R),则()Aa0,b0 B0C0,b0 Da0,0答案B4.如图所示,平面内的。

20、2.2向量的分解与向量的坐标运算2.2.1平面向量基本定理学习目标1.理解平面向量基本定理的内容,了解向量的一组基底的含义.2.在平面内,当一组基底选定后,会用这组基底来表示其他向量.3.会应用平面向量基本定理解决有关平面向量的综合问题.知识点一平面向量基本定理(1)平面向量基本定理如果e1,e2是一平面内的两个不平行的向量,那么该平面内的任一向量a,存在唯一的一对实数a1,a2,使aa1e1a2e2.(2)基底把不共线向量e1,e2叫做表示这一平面内所有向量的一组基底,记为e1,e2.a1e1a2e2叫做向量a关于基底e1,e2的分解式.知识点二直线的向量。

【2.2.1 平面向量基本定理 学】相关DOC文档
3.2 平面向量基本定理 课时对点练含答案
3.2 平面向量基本定理 课时作业含答案
3.2 平面向量基本定理 学案(含答案)
2.3.1 平面向量基本定理 学案(含答案)
2.2.1 平面向量基本定理 学案(含答案)
标签 > 2.2.1 平面向量基本定理 学案含答案[编号:187660]