1.2.3绝对值

第 84 讲 绝对值不等式的解法及其应用1(2018全国卷)设函数 f(x)5|xa|x2|.(1)当 a1 时,求不等式 f(x)0 的解集;(2)若 f(x)1,求 a 的取值范围(1)当 a1 时,f(x) .2,61,-4x可得 f(x)0 的解集为 x|2x3(2)f(x)1 等价于|xa

1.2.3绝对值Tag内容描述:

1、第 84 讲 绝对值不等式的解法及其应用1(2018全国卷)设函数 f(x)5|xa|x2|.(1)当 a1 时,求不等式 f(x)0 的解集;(2)若 f(x)1,求 a 的取值范围(1)当 a1 时,f(x) .2,61,-4x可得 f(x)0 的解集为 x|2x3(2)f(x)1 等价于|xa|x2| 4.而|x a|x2|a2|,且当 x2 时等号成立故 f(x) 1 等价于 |a2|4.由|a 2|4 可得 a6 或 a2.所以 a 的取值范围是( ,6 2,)2(2018广州一模)已知函数 f(x)2|xa|3xb|.(1)当 a1,b0 时,求不等式 f(x)3|x|1 的解集;(2)若 a0,b0,且函数 f(x)的最小值为 2,求 3ab 的值(1)当 a1,b0 时,不等式 f(x)3|x|1,即为 2|x1| 3|x|3。

2、2020-2021 学年人教版初一数学上册期中考点专题学年人教版初一数学上册期中考点专题 02 绝对值与相反数绝对值与相反数 重点突破重点突破 知识点知识点一一 相反数相反数 只有符号不同的两个数叫做互为相反数.(绝对值相等,符号不同的两个数叫做互为相反数) 注意:注意: 1、通常 a 与-a 互为相反数; 2、a 表示任意一个数,可以是正数、负数,也可以是 0; 3 3、特别注意,、特别注意,。

3、第 5 课时 绝对值与相反数(1)【基础巩固】1在数轴上离原点距离是 3 的数是_2绝对值等于本身的数是_,绝对值小于 2 的整数是_3数轴上与表示 1 的点的距离是 2 的点所表示的数有_46 的符号是_,绝对值是_, 的符号是_,绝对值是56_5计算: _23.61.6绝对值等于 10 的数是_7下列说法中,错误的是 ( )A5 的绝对值等于 5 B绝对值等于 5 的数是 5C5 的绝对值是 5 D5、5 的绝对值相等8绝对值最小的有理数是 ( )A1 B0 C1 D不存在9绝对值等于本身的数有 ( )A1 个 B2 个 C4 个 D无数个10绝对值小于 3 的负数有 ( )A2 个 B3 个 C4 个 。

4、第 6 课时 绝对值与相反数(2)【基础巩固】1如果 ,则 x_x52比较下列每组数的大小,用“” “”或“” “”或“0 Ba ,用数轴上的点来表示 a、b,下a图正确的是 ( )16点 A1、A 2、A 3、A n(n 为正整数) 都在数轴上,点 A1 在原点 O 的左边,且A1A101;点 A2 在点 A1 的右边,且 A2A12;点 A3 在点 A2 的左边,且 A3A23;点A4 在点 A3 的右边,且 A4A34,依照上述规律,点 A2012、A 2013 所表示的数分别为 ( )A2 012,2 013 B2 012,2 013 C1 006,1007 D1006,100617点 A、B 分别是数3、 12在数轴上对应的点,使线段 AB 沿数轴向右移动到。

5、2018 年秋人教版数学七年级上册 同步练习第一章有理数相反数、绝对值的几何意义1、判断下列说法是否正确:(1)符号相反的数互为相反数;(2)一个数的绝对值越大,表示它的点在数轴上越靠右;(3)一个数的绝对值越大,表示它的点在数轴上离原点越远;(4)当 a0 时, 总是大于 0.|a|2、已知 a 为有理数,下列结论正确的是( )Aa 一定是负数B |a|一定是正数C |a|一定不是负数D| a|一定是负数3、实数 a,b,c,d 在数轴上的对应点的位置如图 1 所示,这四个数中,绝对值最大的是( )图 1Aa Bb Cc Dd4、已知实数 a,b 在数轴上的位置如图 2 所示,下。

6、小明家在学校正西方3 km处,小丽家在学校正东方2 km处,他们上学所花的时间,与各家到学校的距离有关,你会用数轴上的点表示学校、小明家、小丽家的位置吗?,小明家,学校,小丽家,A,O,B,1画数轴,用数轴的原点O表示学校的位置,规定向东为正,数轴上的1个单位长度表示1km; 2设点A、点B分别表示小明家、小丽家,则点A在原点O左侧且到原点O的距离为3个单位长度,点B在原点O右侧且到原点O的距离为2个单位长度,做一做,数轴上表示一个数的点与原点的距离叫做这个数的绝对值,请你结合数轴,根据定义说出 3、2、0的绝对值,你能说出数轴上的点A、B。

7、根据绝对值与相反数的意义填空:,(2) _,10.5的相反数是 _;,_,5的相反数是_;,_, 的相反数是_;,(3) _,2.3,6,5,5,10.5,10. 5,0,试一试,一个数的绝对值与这个数本身或它的相反数有什么关系?正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0,议一议,例5 求下列各数的绝对值:,解:,当a是正数时,a的绝对值是它本身, 即当a0时,|a|a; 当a是0时,a的绝对值是0, 即当a0时,|a|0 ; 当a是负数时,a的绝对值是它的相反数, 即当a0时,|a|a ,两个正数中,绝对值大的那个数一定大吗? 两个负数呢?,两个正数,绝对值大的正数大。

8、2.4 绝对值与相反数(第 1 课时) (同步测试)同步检测1一个数的绝对值就是在数轴上表示_2_的绝对值是它的本身,_ 的绝对值是它的相反数31 的相反数的绝对值为_ _,1 的绝对值的相反数为_24绝对值等于 5的数有_个,它们是_5 绝对值小于 3的整数有_6绝对值不大于 3的整数有_7绝对值不大于 3的非负整数有_8判断题:(1)a一定是正数 ( )(2)只有两数相等时 ,它们的绝对值才相等 ( )(3) 互为相反数的两数的绝对值相等 ( )(4)绝对值最小的有理数为零 ( )(5)+(-2)与(-2)互为相反数 ( )(6)数轴 上表示-5 的点与原点的。

9、1.3 绝对值与相反数一、选择题 1.如果甲数的绝对值大于乙数的绝对值,那么( ) A. 甲数必定大于乙数 B. 甲数必定小于乙数C. 甲乙两数一定异号 D. 甲乙两数的大小根据具体值确定2.下列各组数中互为相反数的是( ) A. -2 与 B. -2 与 C. 2 与 D. 与2() 2()|2|3.一个数的相反数是非负数,这个数是( ) A. 负数 B. 非负数 C. 正数 D. 非正数4. 的绝对值是( ) 15A. 。

10、 第一章第一章 有理数有理数 1.2.4 绝对值 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的 12019 的绝对值是 A2019 B2019 C 1 2019 D 1 2019 2如图,点 A 所表示的数的绝对值是 A3 B3 C 1 3 D 1 3 3计算| 1 2018 |= A2018 B2018 C 1 2018 D 1 2018 4下列各式不正确的是。

11、专题一 压轴填空题第八关 以绝对值为背景的填空题【名师综述】来源:Zxxk.Com绝对值是高中数学的重要概念,含绝对值问题是高中数学中分类讨论思想的典型体现近年来,高考对绝对值的命题,既考查对绝对值定义、含绝对值函数图象变换的理解,又考查与函数、方程、不等式等综合的运用,着重考查分类讨论思想在解题中运用类型一 以绝对值零点考查分类讨论点典例1【2019江苏徐州一中第一次月考】当时,恒成立,则实数的取值范围是_来源:Zxxk.Com【举一反三】已知函数f(x)|lnx|,g(x)则方程|f(x)g(x)|1实根的个数为_类型二 以绝对值形式考查分段。

12、专题一 压轴填空题第八关 以绝对值为背景的填空题【名师综述】绝对值是高中数学的重要概念,含绝对值问题是高中数学中分类讨论思想的典型体现近年来,高考对绝对值的命题,既考查对绝对值定义、含绝对值函数图象变换的理解,又考查与函数、方程、不等式等综合的运用,着重考查分类讨论思想在解题中运用类型一 以绝对值零点考查分类讨论点典例1【2019江苏徐州一中第一次月考】当时,恒成立,则实数的取值范围是_【答案】【名师指点】本题考查了分段函数、利用导数求最值,以及恒成立问题等内容,借助分类讨论使问题得到解决本题属于难题【。

13、 第 1 页 共 5 页 绝对值与相反数(提高)绝对值与相反数(提高) 【学习目标】【学习目标】 1借助数轴理解绝对值和相反数的概念; 2知道|a|的绝对值的含义以及互为相反数的两个数在数轴上的位置关系; 3会求一个数的绝对值和相反数,并会用绝对值比较两个负有理数的大小; 4 通过应用绝对值解决实际问题,体会绝对值的意义和作用 【要点梳理】【要点梳理】 要点一、相反数要点一、相反数 1 1定义:定义:如果两个数只有符号不同,那么称其中一个数为另一个数的相反数特别地,0 的相反数是 0 要点诠释:要点诠释: (1)“只”字是说仅仅。

14、 第 1 页 共 6 页 绝对值绝对值与与相反数相反数(基础)(基础) 【学习目标】【学习目标】 1借助数轴理解绝对值和相反数的概念; 2知道|a|的绝对值的含义以及互为相反数的两个数在数轴上的位置关系; 3会求一个数的绝对值和相反数,并会用绝对值比较两个负有理数的大小; 4通过应用绝对值解决实际问题,体会绝对值的意义和作用 【要点梳理】【要点梳理】 要点一、要点一、相反数相反数 1 1定义:定义:如果两个数只有符号不同,那么称其中一个数为另一个数的相反数特别地,0 的相反数是 0 要点诠释:要点诠释: (1) “只”字是说仅仅。

15、 第 1 页 共 3 页 【巩固练习】【巩固练习】 一、选择题一、选择题 1一个数比它的相反数小,这个数是( ) A正数 B负数 C非正数 D非负数 2如果0ab,那么, a b两个数一定是( ) A都等于 0 B一正一负 C互为相反数 D互为倒数 3下列判断中,正确的是( ) A如果两个数的绝对值相等,那么这两个数相等; B如果两个数相等,那么这两个数的绝对值相等; C任何数的绝对值都是正数; D如果一个数的绝对值是它本身,那么这个数是正数 42010 年 12 月某日我国部分城市的平均气温情况如下表(记温度零上为正,单位) 城市 温州 上海 北京 哈尔滨 广州 平。

16、 理解绝对值的概念及性质. 会求一个数的绝对值. 甲、乙两辆出租车在一条东西走向的街道上行驶,记向东行驶的里程数 为正。两辆出租车都从O地出发,甲车向东行驶10km到达A处,记作 km, 乙车向西行驶10km到达B处,记做 km。 +10 -10 10 10 0 O B A A、B两点与原点距离分别是多少? 绝对值的意义及求法 0 6 -1 -2 -3 -4 -5 -6 1 2 3 4 。

17、 第 1 页 共 3 页 【巩固练习】【巩固练习】 一、选择题一、选择题 1一个数的相反数是非负数,则这个数一定是( ) A正数 B负数 C非正数 D非负数 2在+(+1)与-(-1) ;-(+1)与+(-1) ;+(+1)与-(+1) ;+(-1)与-(-1)中, 互为相反数的是( ) A B C D 3满足|x|-x 的数有( ) A1 个 B2 个 C3 个 D无数个 4已知 1 | 3| a ,则 a 的值是( ) A3 B-3 C 1 3 D 1 3 或 1 3 5a、b 为有理数,且 a0、b0,|b|a,则 a、b、-a、-b 的大小顺序是( ) Ab-aa-b B-aba-b C-ba-ab D-aa-bb 6下列推理:若 ab,则|a|b|;若|a|b|,则 ab;若 ab,则|a|。

18、3 绝对值1.5 的相反数是( )A5 B5 C D.15 152计算 的结果为( )|13|A. B C3 D313 133有关相反数的说法正确的是( )A 和 0.25 不互为相反数 B3 是相反数14C任何一个数都有相反数 D正数与负数互为相反数4比较大小 :0_2;5_4;4_0.5下列各组数中,互为相反数的是( )A2 与3 B3 与 C2018 与 201.8 D0.2 和13 156若 a 的相反数是3,则 a 的值为( )A1 B2 C3 D47相反数等于本身的数为( )A正数 B负数 C0 D非负数8如图 1 所示,表示互为相反数的两个数的点是( )图 1A A 和 C B A 和 D C B 和 C D B 和 D9.绝对值等于 9 的数是( )A9 B9 C9 或9 D.1910.。

19、第 1 页,共 8 页绝对值 测试时间:60 分钟 总分: 100题号 一 二 三 四 总分得分一、选择题(本大题共 10 小题,共 30.0 分)1. ,则 a 一定是 |= ( )A. 负数 B. 正数 C. 零或负数 D. 非负数2. 若 ,则 的取值不可能是 0|+| ( )A. 0 B. 1 C. 2 D. 23. 实数 a、b 在数轴上的位置如图,则 等于 |+| ( )A. 2a B. 2b C. D. 22 2+24. 若 , ,则 为 |=7 |=9 ( )A. B. C. 和 D. 和2 16 2 16 2 165. 若 a、b 都是不为零的数,则 的结果为 |+|+| ( )A. 3 或 B. 3 或 C. 或 1 D. 3 或 或 13 1 3 16. 的绝对值是 15 ( )A. 5 B. C. D. 15 15 57. 如。

【1.2.3绝对值】相关PPT文档
【1.2.3绝对值】相关DOC文档
标签 > 1.2.3绝对值[编号:78920]