2020届高三精准培优专练二十 几何概型(理) 教师版

上传人:hua****011 文档编号:95165 上传时间:2019-10-29 格式:DOCX 页数:13 大小:874.67KB
下载 相关 举报
2020届高三精准培优专练二十 几何概型(理) 教师版_第1页
第1页 / 共13页
2020届高三精准培优专练二十 几何概型(理) 教师版_第2页
第2页 / 共13页
2020届高三精准培优专练二十 几何概型(理) 教师版_第3页
第3页 / 共13页
2020届高三精准培优专练二十 几何概型(理) 教师版_第4页
第4页 / 共13页
2020届高三精准培优专练二十 几何概型(理) 教师版_第5页
第5页 / 共13页
点击查看更多>>
资源描述

1、精准培优专练2020届高三好教育精准培优专练培优点二十 几何概型一、长度类几何概型例1:若是从区间中任取的一个实数,则函数无零点的概率是( )ABCD【答案】B【解析】方程无实解,则,即,又,其构成的区域长度为,从区间中任取一个实数构成的区域长度为,则方程无实解的概率是故选B二、面积类几何概型例2:(1)图形类几何概型例题2-1:如图,在正方形围栏内均匀撒米粒,一只小鸡在其中随意啄食,此刻小鸡正在正方形的内切圆中的概率是( )ABCD【答案】B【解析】设正方形的边长为,则圆的半径为,由几何概型的概率公式得,故答案为B(2)线性规划类几何概型例2-2:小明一家订购的晚报会在下午之间的任何一个时间

2、随机地被送到,小明一家人在下午之间的任何一个时间随机地开始晚餐你认为晚报在晚餐开始之前被送到和晚餐开始之后被送到哪一种可能性更大?晚报在晚餐开始之前被送到的概率是多少?【答案】见解析;【解析】建立如图所示的坐标系图中直线,围成一个正方形区域,该试验的所有结果与区域内的点一一对应,由题意知,每次结果出现的可能性是相同的,是几何概型作射线晚报在晚餐前送达即,因此图中阴影部分表示事件“晚报在晚餐前送达”而中空白部分则表示事件“晚报在晚餐开始后送到”由图知事件发生的可能性大易求的面积为,而的面积为,由几何概型的概率公式可得(3)利用积分求面积例2-3:如图,矩形的四个顶点依次为,记线段、以及的图象围成

3、的区域(图中阴影部分)为,若向矩形内任意投一点,则点落在区域内的概率为( )ABCD【答案】D【解析】阴影部分的面积是,矩形的面积是,点落在区域内的概率,故选D三、体积类几何概型例3:已知,都在球面上,且在所在平面外,在球面内任取一点,则该点落在三棱锥内的概率为 【答案】【解析】如图,在三角形中,由已知可得,可得,设三角形的外接圆的半径为,由,可得再设的外心为,过作底面的垂线,且使,连接,则为三棱锥的外接球的半径,则球的体积为,则该点落在三棱锥内的概率为对点增分集训一、选择题1已知地铁列车每分钟一班,在车站停分钟则乘客到达站台立即乘上车的概率是( )ABCD【答案】A【解析】由于地铁列车每分钟

4、一班,列车在车站停分钟,乘客到达站台立即乘上车的概率为,故选A2下图是年月中国成功主办的国际数学家大会的会标,是我们古代数学家赵爽为证明勾股定理而绘制的,在我国最早的数学著作周髀算经中有详细的记载若图中大正方形的边长为,小正方形的边长为,现作出小正方形的内切圆,向大正方形所在区域模拟随机投掷个点,有个点落在中间的圆内,由此可估计的所似值为( )ABCD【答案】A【解析】大正方形的边长为,总面积为,小正方形的边长为,其内切圆的半径为,面积为;则,解得故选A3已知椭圆的面积公式为,某同学通过下面的随机模拟实验估计的值过椭圆的左右焦点,分别作与轴垂直的直线与椭圆交于,四点,随机在椭圆内撒粒豆子,设落

5、入四边形内的豆子数为,则圆周率的值约为( )ABCD【答案】A【解析】根据题意得到,将方程中的,代入等式中得到4某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为秒若一名行人来到该路口遇到红灯,则至少需要等待秒才出现绿灯的概率为( )ABCD【答案】B【解析】红灯持续时间为秒,至少需要等待秒才出现绿灯,一名行人前秒来到该路口遇到红灯,至少需要等待秒才出现绿灯的概率为故选B5分别以正方形的四条边为直径画半圆,重叠部分如图中阴影区域所示,若向该正方形内随机投一点,则该点落在阴影区域的概率为( )ABCD【答案】B【解析】设正方形的边长为,那么图中阴影区域的面积,而正方形的面积,所以若向该正

6、方形内随机投一点,则该点落在阴影区域的概率6路公共汽车每分钟发车一次,小明到乘车点的时刻是随机的,则他候车时间不超过两分钟的概率是( )ABCD【答案】A【解析】公共汽车站每隔分钟有一辆车通过,当乘客在上一辆车开走后分钟内到达候车时间会超过分钟,乘客候车时间不超过分钟的概率为7从区间上任意选取一个实数,则双曲线的离心率大于的概率为( )ABCD【答案】D【解析】由题意得,解得,即,8如图,四个相同的直角三角形与中间的小正方形拼成一个大正方形,已知小正方形的外接圆恰好是大正方形的内切圆,现在大正方形内随机取一点,则此点取自阴影部分的概率为( )ABCD【答案】B【解析】设大正方形的边长为,其内切

7、圆的直径为,则小正方形的边长为,所以大正方形的面积为,圆的面积为,小正方形的面积为,则阴影部分的面积为,所以在大正方形内随机取一点,则此点取自阴影部分的概率9欧阳修卖炭翁中写道:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿可见“行行出状元”,卖油翁的技艺让人叹为观止若铜钱是直径为的圆,中间的正方形孔,若你随意向钱上滴一滴油,则油(油滴大小忽略不计)正好落入圆孔中的概率为( )ABCD【答案】A【解析】由题意得,正方形的面积,铜钱的面积,则油正好落入圆孔中的概率二、填空题10已知是所在平面内一点,现将一粒黄豆随机撒在内,则黄豆落在内的概率是 【答案】【解析】以,为邻边作

8、平行四边形,则,因为,所以,得,由此可得,是边上的中线的中点,点到的距离等于到距离的,所以,所以将一粒黄豆随机撒在内,黄豆落在内的概率为11下列关于概率和统计的几种说法:名工人某天生产同一种零件,生产的件数分别是,设其平均数为,中位数为,众数为,则,的大小关系为;样本的标准差是;在面积为的内任选一点,则随机事件“的面积小于”的概率为;从写有的十张卡片中,有放回地每次抽一张,连抽两次,则两张卡片上的数字各不相同的概率是其中正确说法的序号有 【答案】【解析】对于,由题意原数据为,故可得该组数据的平均数,中位数,众数为,所以,故不正确;对于,由题意得样本的平均数为,故方差为,所以标准差为,故正确;对

9、于,如图,作出的高,当的面积等于时,要使的面积小于,则点应位于图中的阴影部分内,由题意可得,故阴影部分的面积,所以由几何概型概率公式可得“的面积小于”的概率为,故不正确;对于,由题意得所有的基本事件总数为个,事件“有放回地每次抽一张,连抽两次,则两张卡片上的数字各不相同”包含的基本事件有个,根据古典概型的概率公式得所求概率为,故正确综上可得正确12已知直线过点,与圆相交于,两点,则弦长的概率为 【答案】【解析】显然直线的斜率存在,设直线方程为,代入中得,与圆相交于,两点,又当弦长时,圆半径,圆心到直线的距离,即,由几何概型知,事件:“直线与圆相交弦长”的概率三、解答题13设关于的一元二次方程(

10、1)若是从,五个数中任取的一个数,是从,三个数中任取的一个数,求上述方程有实根的概率;(2)若是从区间上任取的一个数,是从区间上任取的一个数,求上述方程有实根的概率【答案】(1);(2)【解析】(1)由题意知本题是一个古典概型,设事件为“方程有实根”,总的基本事件共个:,其中第一个数表示的取值,第二个数表示的取值事件中包含个基本事件,事件发生的概率为(2)由题意知本题是一个几何概型,试验的全部结束所构成的区域为,满足条件的构成事件的区域为所求的概率是14已知有一个三边长分别为的三角形求下面两只蚂蚁与三角形三顶点的距离均超过的概率(1)一只蚂蚁在三角形的边上爬行;(2)一只蚂蚁在三角形所在区域内

11、部爬行【答案】(1);(2)【解析】记“蚂蚁与三角形三顶点的距离均超过”为事件(1)根据题意,如图中,则的周长为,由图分析可得,距离三角形的三个顶点的距离均超过的部分为线段、上,即其长度为,则蚂蚁距离三角形的三个顶点的距离均超过的概率蚂蚁在三角形的边上爬行,其测度是长度,所求概率(2)蚂蚁在三角形所在区域内部爬行,其测度是面积,三角形的面积为,离三个顶点距离都不大于的地方的面积为,所以其恰在离三个顶点距离都大于的地方的概率为所求概率15已知圆,直线(1)圆的圆心到直线的距离为多少?(2)圆上任意一点到直线的距离小于的概率为多少?【答案】(1);(2)【解析】(1)由题意知,圆的圆心是,圆心到直

12、线的距离是(2)如图,圆心到直线的距离是,到直线的距离是,则劣弧所对应的弧上的点到直线的距离都小于,优弧所对应的弧上的点到直线的距离都大于,根据几何概型的概率公式得到16某射击运动员进行射击训练,前三次射击在靶上的着弹点、刚好是边长为的等边三角形的三个顶点(1)第四次射击时,该运动员瞄准区域射击(不会打到外),则此次射击的着弹点距、的距离都超过的概率为多少?(弹孔大小忽略不计)(2)该运动员前三次射击的成绩(环数)都在区间内,调整一下后,又连打三枪,其成绩(环数)都在区间内现从这次射击成绩中随机抽取两次射击的成绩(记为和)进行技术分析求事件“”的概率【答案】(1);(2)【解析】(1)因为着弹点若与、的距离都超过,则着弹点就不能落在分别以、为中心,半径为的三个扇形区域内,只能落在图中阴影部分内因为,图中阴影部分的面积为,故所求概率为(2)前三次射击成绩依次记为,后三次成绩依次记为,从这次射击成绩中随机抽取两个,基本事件是:,共个,其中可使发生的是后个基本事件故13

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 高中 > 高中数学 > 数学高考 > 二轮复习