1、考点分类:考点分类见下表考点内容考点分析与常见题型两卫星的位置关系和相遇问题选择题体育运动中的平抛运动问题选择题、计算题斜面上圆周运动的临界问题选择题、计算题 万有引力定律与几何知识的结合选择题考点一两卫星的位置关系和相遇问题(1)两卫星相距最近的含义:两卫星和中心天体处在一条直线上,且两个卫星在中心天体的同侧;(2)两卫星相距最远的含义:两卫星和中心天体处在一条直线上,且两个卫星在中心天体的两侧.(3)两卫星相邻两次相遇的含义:初始位置两卫星相距最近,下一位置两卫星还是相距最近,实际上内轨道的卫星所转过的圆心角比外轨道卫星所转过的圆心角多2.考点二 体育运动中的平抛运动问题在体育运动中,像乒
2、乓球、排球球等都有中间网及边界问题,要求球既能过网,又不出边界,某物理量(尤其是球速)往往要有一定的范围限制,在这类问题中,确定临界状态,画好临界轨迹,是解决问题的关键点考点三斜面上圆周运动的临界问题在斜面上做圆周运动的物体,因所受的控制因素不同,如静摩擦力控制、绳控制、杆控制,物体的受力情况和所遵循的规律也不相同.本考点主要注意以下几点:(一)静摩擦力控制下的圆周运动(二)轻杆控制下的圆周运动(三)轻绳控制下的圆周运动考点四 万有引力定律与几何知识的结合人造卫星绕地球运动,太阳发出的光线沿直线传播,地球或卫星都会遮挡光线,从而使万有引力、天体运动与几何知识结合起来求解此类问题时,要根据题中情
3、景,由光线沿直线传播画出几何图形,通过几何图形找到边界光线,从而确定临界条件,并结合万有引力提供卫星做圆周运动所需的向心力,列式求解典例精析考点一:两卫星的位置关系和相遇问题典例一:(2017广东省深圳市高三第一次调研)人造卫星a的圆形轨道离地面高度为h,地球同步卫星b离地面高度为H,hH,两卫星共面且旋转方向相同某时刻卫星a恰好出现在赤道上某建筑物c的正上方,设地球赤道半径为R,地面重力加速度为g,则()Aa、b线速度大小之比为 Ba、c角速度之比为 Cb、c向心加速度大小之比Da下一次通过c正上方所需时间等于t2 典例二:(2018河南八市学评测试)地球赤道上一位观察者a,赤道平面内有一颗
4、自西向东运行的近地卫星b,a观测发现,其正上方有一颗静止不动的卫星c,每隔时间T卫星b就会从其正上方飞过。已知地球半径为R,地球表面的重力加速度为g,万有引力常量为G,下列说法正确的是Ac的加速度大于b的加速度Ba的线速度大于c的线速度C地球的质量为Dc的周期为考点二:体育运动中的平抛运动问题典例一:一带有乒乓球发射机的乒乓球台如图所示水平台面的长和宽分别为L1和L2,中间球网高度为h.发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h.不计空气的作用,重力加速度大小为g.若乒乓球的发射速率v在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧
5、台面上,则v的最大取值范围是()A. vL1 B. v C. v D. v 典例二:(2015浙江卷,17)如图所示为足球球门,球门宽为L.一个球员在球门中心正前方距离球门s处高高跃起,将足球顶入球门的左下方死角(图中P点).球员顶球点的高度为h.足球做平抛运动(足球可看成质点,忽略空气阻力),则( )A.足球位移的大小x=B.足球初速度的大小v0=C.足球末速度的大小v=D.足球初速度的方向与球门线夹角的正切值tan =考点三:斜面上圆周运动的临界问题典例一:(2014安徽卷,19)如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度转动,盘面上离转轴距离2.5 m处有一小物体与圆
6、盘始终保持相对静止.物体与盘面间的动摩擦因数为 (设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30,g取10 m/s2.则的最大值是( )A. rad/sB. rad/sC.1.0 rad/sD.0.5 rad/s考点四 万有引力定律与几何知识的结合典例一:(2018石家庄模拟)如图所示,人造卫星A、B在同一平面内绕地心O做匀速圆周运动,已知A、B连线与AO连线间的夹角最大为,则卫星A、B的线速度之比为()Asin B.C. D.1.(多选)宇宙飞船以周期T绕地球做圆周运动时,由于地球遮挡阳光,会经历“日全食”过程,如图所示已知地球的半径为R,地球质量为M,引力常量为G,地球自转周期为
7、T0,太阳光可看做平行光,宇航员在A点测出的张角为,则()A飞船绕地球运动的线速度为 B一天内飞船经历“日全食”的次数为C飞船每次经历“日全食”过程的时间为 D飞船周期为T 2.如图建筑是厄瓜多尔境内的“赤道纪念碑”。设某人造地球卫星在赤道上空飞行,卫星的轨道平面与地球赤道重合,飞行高度低于地球同步卫星。已知卫星轨道半径为r,飞行方向与地球的自转方向相同,设地球的自转角速度为0,地球半径为R,地球表面重力加速度为g,某时刻卫星通过这一赤道纪念碑的正上方,该卫星过多长时间再次经过这个位置()A. B.C. D. 3、(2017四川省遂宁市高三二诊)如图所示,质量相同的三颗卫星a、b、c绕地球做匀
8、速圆周运动,其中b、c在地球的同步轨道上,a距离地球表面的高度为R,此时a、b恰好相距最近已知地球质量为M、半径为R、地球自转的角速度为.万有引力常量为G,则()A发射卫星b时速度要大于11.2 km/sB卫星a的机械能大于卫星b的机械能C卫星a和b下一次相距最近还需经过tD若要卫星c沿同步轨道与b实现对接,可让卫星c加速4、(2017广东省深圳市高三第一次调研)人造卫星a的圆形轨道离地面高度为h,地球同步卫星b离地面高度为H,hH,两卫星共面且旋转方向相同某时刻卫星a恰好出现在赤道上某建筑物c的正上方,设地球赤道半径为R,地面重力加速度为g,则()Aa、b线速度大小之比为 Ba、c角速度之比
9、为 Cb、c向心加速度大小之比 Da下一次通过c正上方所需时间等于t2 5.如图所示,球网高出桌面H到桌边的距离为L,某人在乒乓球训练中,从左侧 处,将球沿垂直于网的方向水平击出,球恰好通过网的上沿落到右侧边缘,设乒乓球的运动为平抛运动,下列判断正确的是( )A.击球点的高度与网高度之比为21B.乒乓球在网左右两侧运动时间之比为21C.乒乓球过网时与落到右侧桌边缘时速率之比为12D.乒乓球在左、右两侧运动速度变化量之比为126.(2018福建质检)轰炸机进行实弹训练,在一定高度沿水平方向匀速飞行,某时刻释放炸弹,一段时间后击中竖直悬崖上的目标P点。不计空气阻力,下列判断正确的是A若轰炸机提前释
10、放炸弹,则炸弹将击中P点上方B若轰炸机延后释放炸弹,则炸弹将击中P点下方C若轰炸机在更高的高度提前释放炸弹,则炸弹仍可能击中P点D若轰炸机在更高的高度延后释放炸弹,则炸弹仍可能击中P点7. (2018徐州期中)如图所示,链球上面安有链子和把手。运动员两手握着链球的把手,人和球同时快速旋转,最后运动员松开把手,链球沿斜向上方向飞出,不计空气阻力。关于链球的运动, 下列说法正确的有A.链球脱手后做匀变速曲线运动B.链球脱手时沿金属链方向飞出C.链球抛出角度一定时,脱手时的速率越大,则飞得越远D.链球脱手时的速率一定时,抛出角度越小,一定飞得越远8(2018湖北荆州第一次质检)如图所示,一位同学玩飞
11、镖游戏。圆盘最上端有一P点,飞镖抛出时与P等高,且距离P点为L。当飞镖以初速度v0垂直盘面瞄准P点抛出的同时,圆盘以经过盘心O点的水平轴在竖直平面内匀速转动。忽略空气阻力,重力加速度为g,若飞镖恰好击中P点,则v0可能为()ABCD9. a是地球赤道上一幢建筑,b是在赤道平面内做匀速圆周运动、距地面9.6106 m的卫星,c是地球同步卫星,某一时刻b,c刚好位于a的正上方如图(甲)所示,经48 h,a,b,c的大致位置是图(乙)中的(取地球半径R=6.4106 m,地球表面重力加速度g=10 m/s2,= )( )10.如图所示,在倾角为的光滑斜面上,有一长为l的细绳,细绳的一端固定在O点,另一端拴一质量为m的小球,现使小球恰好能在斜面上做完整的圆周运动,已知O点到斜面底边的距离sOC=L,求:(1)小球通过最高点A时的速度vA;11. 一位网球运动员以拍击球,使网球沿水平方向飞出.第一只球飞出时的初速度为v1,落在自己一方场地B点后,弹跳起来,刚好擦网而过,落在对方场地的A点处.如图所示,第二只球飞出时的初速度为v2,直接擦网而过,也落在A点处.设球与地面碰撞时没有能量损失,且不计空气阻力,求: (1)网球两次飞出时的初速度之比v1v2;(2)运动员击球点的高度H高h之比Hh. 8