沪科版八年级数学下册《17.2.1配方法》课件

上传人:可** 文档编号:50414 上传时间:2019-03-13 格式:PPTX 页数:30 大小:344.14KB
下载 相关 举报
沪科版八年级数学下册《17.2.1配方法》课件_第1页
第1页 / 共30页
沪科版八年级数学下册《17.2.1配方法》课件_第2页
第2页 / 共30页
沪科版八年级数学下册《17.2.1配方法》课件_第3页
第3页 / 共30页
沪科版八年级数学下册《17.2.1配方法》课件_第4页
第4页 / 共30页
沪科版八年级数学下册《17.2.1配方法》课件_第5页
第5页 / 共30页
点击查看更多>>
资源描述

1、17.2 一元二次方程的解法,第17章 一元二次方程,导入新课,讲授新课,当堂练习,课堂小结,17.2.1 配方法,学习目标,1.运用开平方法解形如x2=p或(x+n)2=p (p0)的方程. 2.掌握用配方法解一元二次方程及解决有关问题. (重点) 3.探索直接开平方法和配方法之间的区别和联系. (难点),1.如果 x2=a,则x叫做a的 .,导入新课,复习引入,平方根,2.如果 x2=a(a 0),则x= .,3.如果 x2=64 ,则x= .,8,4.任何数都可以作为被开方数吗?,负数不可以作为被开方数.,讲授新课,问题:一桶油漆可刷的面积为1500dm2,李林用这桶油漆恰好刷完10个同

2、样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?,解:设正方体的棱长为x dm,则一个正方体的表面积为6x2dm2,可列出方程,106x2=1500,,由此可得,x2=25,,开平方得,即x1=5,x2=5.,棱长不能是负值,正方体的棱长为5dm,x=5,,试一试: 解下列方程,并说明你所用的方法,与同伴交流.,(1) x2=4,(2) x2=0,(3) x2+1=0,解:根据平方根的意义,得 x1=2, x2=-2.,解:根据平方根的意义,得 x1=x2=0.,解:根据平方根的意义,得x2=-1, 负数没有平方根,原方程无解.,(2)当p=0 时,方程(I)有两个相等的实数根 =0;

3、,(3)当p0 时,根据平方根的意义,方程(I)有两个不等 的实数根 , ;,例1 利用直接开平方法解下列方程:,解:,(1) x2=6,,直接开平方,得,(2)移项,得,x2=900.,直接开平方,得,x=30,,x1=30, x2=30.,典例精析,在解方程(I)时,由方程x2=25得x=5.由此想到: (x+3)2=5 , 得,对照上面方法,你认为怎样解方程(x+3)2=5,探究交流,于是,方程(x+3)2=5的两个根为,上面的解法中 ,由方程得到,实质上是把一个一元二次方程“降次”,转化为两个一元一次方程,这样就把方程转化为我们会解的方程了.,解题归纳,例2 解下列方程: (1),即x

4、1=3,x2=-1.,解:移项,得,x-1是4的平方根,,x-1=2.,(2),解: 移项,得,两边都除以12,得,3-2x是0.25的平方根,,3-2x=0.5.,即3-2x=0.5,3-2x=-0.5.,1.能用直接开平方法解的一元二次方程有什么特点?,如果一个一元二次方程具有x2=p或(xn)2= p(p0)的形式,那么就可以用直接开平方法求解.,2.任意一个一元二次方程都能用直接开平方法求解吗?请举例说明.,探讨交流,问题1.你还记得吗?填一填下列完全平方公式.,(1) a2+2ab+b2=( )2;,(2) a2-2ab+b2=( )2.,a+b,a-b,探究交流,问题2.填上适当的

5、数或式,使下列各等式成立.,(1)x2+4x+ = ( x + )2,(2)x2-6x+ = ( x- )2,(3)x2+8x+ = ( x+ )2,(4),x2- x+ = ( x- )2,你发现了什么规律?,22,2,32,3,42,4,二次项系数为1的完全平方式: 常数项等于一次项系数一半的平方.,归纳总结,想一想: x2+px+( )2=(x+ )2,配方的方法,探究交流,怎样解方程: x2+6x+4=0 (1),问题1 方程(1)怎样变成(x+n)2=p的形式呢?,解:,x2+6x+4=0,x2+6x=-4,移项,x2+6x+9=-4+9,两边都加上9,二次项系数为1的完全平方式:

6、常数项等于一次项系数一半的平方.,方法归纳,在方程两边都加上一次项系数一半的平方.注意是在二次项系数为1的前提下进行的.,问题2 为什么在方程x2+6x=-4的两边加上9?加其他数行吗?,不行,只有在方程两边加上一次项系数一半的平方,方程左边才能变成完成平方x2+2bx+b2的形式.,方程配方的方法:,要点归纳,像这样通过配成完全平方式来解一元二次方程,叫做配方法.,配方法的定义,配方法解方程的基本思路,把方程化为(x+n)2=p的形式,将一元二次方程降次,转化为一元一次方程求解,配方法解方程的基本步骤,一移常数项;二配方配上 ; 三写成(x+n)2=p (p 0); 四直接开平方法解方程.,

7、例3 解下列方程:,解:(1)移项,得,x28x=1,配方,得,x28x+42=1+42 ,( x4)2=15,由此可得,即,配方,得,由此可得,二次项系数化为1,得,解:移项,得,2x23x=1,即,移项和二次项系数化为1这两个步骤能不能交换一下呢?,配方,得,实数的平方不会是负数,x取任何实数时,上式都不成立,原方程无实数根,解:移项,得,二次项系数化为1,得,为什么方程两边都加12?,即,例4.试用配方法说明:不论k取何实数,多项式k24k5的值必定大于零.,解:k24k5=k24k41,=(k-2)21,(k-2)20,(k-2)211.,k24k5的值必定大于零.,1. 方程2x2

8、- 3m - x +m2 +2=0有一根为x = 0,则 m的值为( )A. 1 B.1 C.1或2 D.1或-2 2.应用配方法求最值. (1) 2x2 - 4x+5的最小值; (2) -3x2 + 5x +1的最大值.,练一练,C,解:(1) 2x2 - 4x +5 = 2(x - 1)2 +3 当x =1时有最小值3.(2) -3x2 + 12x - 16 = -3(x - 2)2 - 4 当x =2时有最大值-4.,归纳总结,配方法的应用,1.求最值或 证明代数式 的值为恒正 (或负),对于一个关于x的二次多项式通过配方成a(x+m)2 n的形式后,(x+m)20,n为常数,当a0时,

9、可知其最小值;当a0时,可知其最大值.,2.完全平方式中的配方,如:已知x22mx16是一个完全平方式,所以一次项系数一半的平方等于16,即m2=16,m=4.,3.利用配方构成非负数和的形式,对于含有多个未知数的二次式的等式,求未知数的值,解题突破口往往是配方成多个完全平方式得其和为0,再根据非负数的和为0,各项均为0,从而求解.如:a2b24b4=0,则a2(b2)2=0,即a=0,b=2.,当堂练习,(D) (2x+3)2=25,解方程,得2x+3=5, x1= 1;x2=-4,1.下列解方程的过程中,正确的是( ),(A) x2=-2,解方程,得x=,(B) (x-2)2=4,解方程,

10、得x-2=2,x=4,D,(1)方程x2=0.25的根是 . (2)方程2x2=18的根是 . (3)方程(2x-1)2=9的根是 .,3. 解下列方程:(1)x2-810; (2)2x250; (3)(x1)2=4 .,x1=0.5,x2=-0.5,x13,x2-3,x12,x21,2.填空:,解:x19, x29.,解:x15, x25.,解:x11, x23.,4.解下列方程:,(1)x2+4x-9=2x-11;(2)x(x+4)=8x+12;(3)4x2-6x-3=0; (4) 3x2+6x-9=0.,解:x2+2x+2=0,,(x+1)2=-1.,此方程无解.,解:x2-4x-12=

11、0,,(x-2)2=16.,x1=6,x2=-2.,解:x2+2x-3=0,,(x+1)2=4.,x1=-3,x2=1.,5.如图,在一块长35m、宽26m的矩形地面上,修建同样宽的两条互相垂直的道路,剩余部分栽种花草,要使剩余部分的面积为850m2,道路的宽应为多少?,解:设道路的宽为xm, 根据题意得,(35-x)(26-x)=850,,整理得,x2-61x+60=0.,解得,x1=60(不合题意,舍去), x2=1.,答:道路的宽为1m.,6.若 ,求(xy)z 的值.,解:对原式配方,得,由代数式的性质可知,7.已知a,b,c为ABC的三边长,且 试判断ABC的形状.,解:对原式配方,得,由代数式的性质可知,ABC为等边三角形.,课堂小结,配方法,定义,通过配成完全平方形式解一元二次方程的方法.,步骤,一移常数项; 二配方配上 ; 三写成(x+n)2=p (p 0); 四直接开平方法解方程.,特别提醒: 在使用配方法解方程之前先把方程化为x2+px+q=0的形式.,应用,求代数式的最值或证明,直接开平方法,利用平方根的定义求方程的根的方法,

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 初中 > 初中数学 > 沪科版 > 八年级下册