1.1 两个基本计数原理(第2课时)分类计数原理与分步计数原理的应用 学案(苏教版高中数学选修2-3)

上传人:画** 文档编号:155322 上传时间:2020-10-05 格式:DOCX 页数:8 大小:171.33KB
下载 相关 举报
1.1 两个基本计数原理(第2课时)分类计数原理与分步计数原理的应用 学案(苏教版高中数学选修2-3)_第1页
第1页 / 共8页
1.1 两个基本计数原理(第2课时)分类计数原理与分步计数原理的应用 学案(苏教版高中数学选修2-3)_第2页
第2页 / 共8页
1.1 两个基本计数原理(第2课时)分类计数原理与分步计数原理的应用 学案(苏教版高中数学选修2-3)_第3页
第3页 / 共8页
1.1 两个基本计数原理(第2课时)分类计数原理与分步计数原理的应用 学案(苏教版高中数学选修2-3)_第4页
第4页 / 共8页
亲,该文档总共8页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、第2课时分类计数原理与分步计数原理的应用学习目标巩固分类计数原理和分步计数原理,并能灵活应用这两个计数原理解决实际问题.知识点一两个计数原理的区别与联系分类计数原理分步计数原理相同点用来计算完成一件事的方法种类不同点分类完成,类类相加分步完成,步步相乘每类方案中的相邻的试验田不能种同一种作物每一种方法都能独立完成这件事每步依次完成才算完成这件事(每步中的一种方法不能独立完成这件事)注意点类类独立,不重不漏步步相依,步骤完整知识点二两个计数原理的综合应用解决较为复杂的计数问题,一般要将两个计数原理综合应用.使用时要做到目的明确,层次分明,先后有序,还需特别注意以下两点:(1)合理分类,准确分步:

2、处理计数问题,应扣紧两个原理,根据具体问题首先弄清楚是“分类”还是“分步”,要搞清楚“分类”或者“分步”的具体标准.分类时需要满足两个条件:类与类之间要互斥(保证不重复);总数要完备(保证不遗漏),也就是要确定一个合理的分类标准.分步时应按事件发生的连贯过程进行分析,必须做到步与步之间互相独立,互不干扰,并确保连续性.(2)特殊优先,一般在后:解含有特殊元素、特殊位置的计数问题,一般应优先安排特殊元素,优先确定特殊位置,再考虑其他元素与其他位置,体现出解题过程中的主次思想.1.分类计数原理与分步计数原理的共同点是把一个原始的事件分解成若干个分事件来完成,它们都是关于做一件事的不同方法种数的问题

3、.()2.在解决综合问题时,一般是先分类再分步.()3.分类计数的关键是“分类”,各类方法之间是互斥的,并列的;分步计数的关键是“分步”,各步之间是关联的.()类型一排数问题例1用0,1,2,3,4五个数字,(1)可以排成多少个三位数字的电话号码?(2)可以排成多少个三位数?(3)可以排成多少个能被2整除的无重复数字的三位数?考点两个计数原理的应用题点两个原理在排数中的应用解(1)三位数字的电话号码,首位可以是0,数字也可以重复,每个位置都有5种排法,共有55553125(种).(2)三位数的首位不能为0,但可以有重复数字,首先考虑首位的排法,除0外共有4种方法,第二、三位可以排0,因此,共有

4、455100(种).(3)被2整除的数即偶数,末位数字可取0,2,4,因此,可以分两类,一类是末位数字是0,则有4312(种)排法;一类是末位数字不是0,则末位有2种排法,即2或4,再排首位,因为0不能在首位,所以有3种排法,十位有3种排法,因此有23318(种)排法.因而有121830(种)排法.即可以排成30个能被2整除的无重复数字的三位数.引申探究由本例中的五个数字可组成多少个无重复数字的四位奇数?解完成“组成无重复数字的四位奇数”这件事,可以分四步:第一步定个位,只能从1,3中任取一个,有2种方法;第二步定首位,把1,2,3,4中除去用过的一个还有三个,可任取一个,有3种方法;第三步,

5、第四步把剩下的包括0在内的还有3个数字先排百位有3种方法,再排十位有2种方法.由分步计数原理知共有233236(个).反思与感悟对于组数问题,应掌握以下原则:(1)明确特殊位置或特殊数字,是我们采用“分类”还是“分步”的关键.一般按特殊位置(末位或首位)分类,分类中再按特殊位置(或特殊元素)优先的策略分步完成;如果正面分类较多,可采用间接法求解.(2)要注意数字“0”不能排在两位数字或两位数字以上的数的最高位.跟踪训练1(1)用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有_个.(用数字作答)(2)从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中

6、奇数的个数为_.考点两个计数原理的应用题点两个原理在排数中的应用答案(1)14(2)18解析(1)因为四位数的每个数位上都有两种可能性,其中四个数字全是2或3的情况不合题意,所以符合题意的四位数有24214(个).(2)由于题目要求的是奇数,那么对于此三位数可以分成两种情况:奇偶奇;偶奇奇.如果是第一种奇偶奇的情况,可以从个位开始分析(3种选择),之后十位(2种选择),最后百位(2种选择),共12种;如果是第二种情况偶奇奇,分析同理:个位(3种情况),十位(2种情况),百位(不能是0,1种情况),共6种,因此总共12618种情况.类型二选(抽)取与分配问题例2高三年级的三个班到甲、乙、丙、丁四

7、个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有_种.考点抽取(分配)问题题点抽取(分配)问题答案37解析方法一(直接法)以甲工厂分配班级情况进行分类,共分为三类:第一类,三个班级都去甲工厂,此时分配方案只有1种情况;第二类,有两个班级去甲工厂,剩下的班级去另外三个工厂,其分配方案共有339(种);第三类,有一个班级去甲工厂,另外两个班级去其他三个工厂,其分配方案共有33327(种).综上所述,不同的分配方案有192737(种).方法二(间接法)先计算3个班级自由选择去何工厂的总数,再扣除甲工厂无人去的情况,即44433337(种)方案.反思与感悟解决抽取

8、(分配)问题的方法(1)当涉及对象数目不大时,一般选用列举法、树形图法、框图法或者图表法.(2)当涉及对象数目很大时,一般有两种方法:直接使用分类计数原理或分步计数原理.一般地,若抽取是有顺序的就按分步进行;若是按对象特征抽取的,则按分类进行.间接法:去掉限制条件,计算所有的抽取方法数,然后减去所有不符合条件的抽取方法数即可.跟踪训练2有四位同学参加三项不同的竞赛.(1)每位学生必须参加且只能参加一项竞赛,有多少种不同结果?(2)每项竞赛只许一位学生参加,有多少种不同的结果?考点分步计数原理题点分步计数原理的应用解(1)学生可以选择竞赛项目,而竞赛项目对于学生无条件限制,所以每位学生均有3个不

9、同的机会,要完成这件事必须是每位学生参加的竞赛全部确定下来才行,因此需分四步.而每位学生均有3个不同选择,所以用分步计数原理可得33333481(种)不同结果.(2)竞赛项目可挑选学生,而学生无选择项目的机会,每一个项目可挑选4位不同学生中的一位.要完成这件事必须是每项竞赛所参加的学生全部确定下来才行,因此需分三步,用分步计算原理可得4444364(种)不同结果.类型三涂色与种植问题命题角度1涂色问题例3将红、黄、蓝、白、黑五种颜色涂在如图所示“田”字形的4个小方格内,每格涂一种颜色,相邻两格涂不同的颜色,如果颜色可以反复使用,共有多少种不同的涂色方法?1234考点涂色问题题点涂色问题解第1个

10、小方格可以从5种颜色中任取一种颜色涂上,有5种不同的涂法.(1)当第2个、第3个小方格涂不同颜色时,有4312(种)不同的涂法,第4个小方格有3种不同的涂法,由分步计数原理可知有5123180(种)不同的涂法.(2)当第2个、第3个小方格涂相同颜色时,有4种涂法,由于相邻两格不同色,因此,第4个小方格也有4种不同的涂法,由分步计数原理可知有54480(种)不同的涂法.由分类计数原理可得共有18080260(种)不同的涂法.引申探究若本例中的区域改为如图所示,其他条件均不变,则不同的涂法共有多少种?解依题意,可分两类情况:不同色;同色.第一类:不同色,则所涂的颜色各不相同,可将这件事情分成4步来

11、完成.第一步涂,从5种颜色中任选一种,有5种涂法;第二步涂,从余下的4种颜色中任选一种,有4种涂法;第三步涂与第四步涂时,分别有3种涂法和2种涂法.于是由分步计数原理可得,不同的涂法为5432120(种).第二类:同色,则不同色,我们可将涂色工作分成三步来完成.第一步涂,有5种涂法;第二步涂,有4种涂法;第三步涂,有3种涂法.于是由分步计数原理得,不同的涂法有54360(种).综上可知,所求的涂色方法共有12060180(种).反思与感悟涂色问题的四个解答策略涂色问题是考查计数方法的一种常见问题,由于这类问题常常涉及分类与分步,所以在高考题中经常出现,处理这类问题的关键是要找准分类标准,求解涂

12、色问题一般是直接利用两个计数原理求解,常用的方法有:(1)按区域的不同以区域为主分步计数,并用分步计数原理计算.(2)以颜色为主分类讨论法,适用于“区域、点、线段”问题,用分类计数原理计算.(3)将空间问题平面化,转化为平面区域的涂色问题.(4)对于不相邻的区域,常分为同色和不同色两类,这是常用的分类标准.跟踪训练3如图所示,将四棱锥SABCD的每一个顶点染上一种颜色,并使同一条棱上的两端点异色,如果只有5种颜色可供使用,求不同的染色方法总数.考点涂色问题题点涂色问题解由题意,四棱锥SABCD的顶点S,A,B所染的颜色互不相同,它们共有54360(种)染色方法.当S,A,B染色确定时,不妨设其

13、颜色分别为1,2,3.若C染2,则D可染3或4或5,有3种染法;若C染4,则D可染3或5,有2种染法;若C染5,则D可染3或4,有2种染法.由分类计数原理知,当S,A,B染法确定时,C,D有7种染法.由分步计数原理得,不同的染色方法有607420(种).命题角度2种植问题例4将3种作物全部种植在如图所示的5块试验田中,每块种植一种作物,且相邻的试验田不能种同一种作物,则不同的种植方法共有_种.考点种植问题题点种植问题答案42解析分别用a、b、c代表3种作物,先安排第一块田,有3种方法,不妨设放入a,再安排第二块田,有2种方法b或c,不妨设放入b,第三块也有2种方法a或c.(1)若第三块田放c:

14、abc第四、五块田分别有2种方法,共有224(种)方法.(2)若第三块田放a:aba第四块有b或c2种方法,若第四块放c:abac第五块有2种方法;若第四块放b:abab第五块只能种作物c,共1种方法.综上,共有32(2221)42(种)方法.反思与感悟按元素性质分类,按事件发生过程分步是计数问题的基本思想方法,区分“分类”与“分步”的关键,是验证所提供的某一种方法是否完成了这件事情,分类中的每一种方法都能完成这件事情,而分步中的每一种方法不能完成这件事情,只是向事情的完成迈进了一步.跟踪训练4从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,求有

15、多少种不同的种植方法.考点种植问题题点种植问题解方法一(直接法)若黄瓜种在第一块土地上,则有326(种)不同的种植方法.同理,黄瓜种在第二块、第三块土地上,均有326(种)不同的种植方法.故不同的种植方法共有6318(种).方法二(间接法)从4种蔬菜中选出3种,种在三块地上,有43224(种),其中不种黄瓜有3216(种),故不同的种植方法共有24618(种).1.用0,1,2,3组成没有重复数字的四位数,其中奇数有_个.考点两个计数原理的应用题点两个计数原理在排数中的应用答案8解析个位数只能是1或3,所以有2种选择,首位不能为0,则有2种选择,剩下的2个数字,百位有2种选择,十位数字只有1种

16、选择,由分步计数原理,奇数有22218(个).2.在2,3,5,7,11这五个数字中,任取两个数字组成分数,其中假分数的个数为_.考点抽取(分配)问题题点抽取(分配)问题答案10解析当分子为11时,分母可为2,3,5,7,所以可构成4个假分数;当分子为7时,分母可为2,3,5,所以可构成3个假分数;当分子为5时,分母可为2,3,所以可构成2个假分数;当分子为3时,分母可为2,所以可构成1个假分数.由分类计数原理可得,假分数的个数为432110.3.有5名同学被安排在周一至周五值日,每人值日一天.已知同学甲只能在周三值日,那么这5名同学值日顺序的安排方案共有_种.考点抽取(分配)问题题点抽取(分

17、配)问题答案24解析安排同学甲周三值日,其余4名同学的安排方案分四个步骤完成:第一步,安排第一位同学,有4种方法;第二步,安排第二位同学,有3种方法;第三步,安排第三位同学,有2种方法;第四步,安排第四位同学,有1种方法.根据分步计数原理知,这5名同学值日顺序的安排方案共有432124(种).4.如图所示,在A,B间有四个焊接点,若焊接点脱落,则可能导致电路不通.今发现A,B之间线路不通,则焊接点脱落的不同情况有_种.考点分类计数原理题点分类计数原理的应用答案13解析按照焊点脱落的个数进行分类:第一类:脱落一个焊点,只能是脱落1或4,有2种情况;第二类:脱落两个焊点,有(1,4),(2,3),

18、(1,2),(1,3),(2,4),(3,4),共6种情况;第三类:脱落三个焊点,有(1,2,3),(1,2,4),(1,3,4),(2,3,4),共4种情况;第四类:脱落四个焊点,只有(1,2,3,4)1种情况.于是焊点脱落的情况共有264113(种).5.如图,用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂法有_种.考点涂色问题题点涂色问题答案108解析A有4种涂法,B有3种涂法,C有3种涂法,D有3种涂法,共有4333108(种)涂法.1.分类计数原理与分步计数原理是两个最基本、也是最重要的原理,是解答后面将要学习的排列、组合问题,尤其是较复杂的排列、组合问题的基础.2.应用分类计数原理要求分类的每一种方法都能把事件独立完成;应用分步计数原理要求各步均是完成事件必须经过的若干彼此独立的步骤.3.一般是先分类再分步,分类时要设计好标准,设计好分类方案,防止重复和遗漏.4.若正面分类的种类比较多,而问题的反面种类比较少时,则使用间接法会简单一些.

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 高中 > 高中数学 > 苏教版 > 选修2-3