2020年高考数学(理)大题专题解析与训练《函数与导数》

上传人:Al****81 文档编号:126928 上传时间:2020-03-15 格式:DOC 页数:15 大小:1.80MB
下载 相关 举报
2020年高考数学(理)大题专题解析与训练《函数与导数》_第1页
第1页 / 共15页
2020年高考数学(理)大题专题解析与训练《函数与导数》_第2页
第2页 / 共15页
2020年高考数学(理)大题专题解析与训练《函数与导数》_第3页
第3页 / 共15页
亲,该文档总共15页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

函数与导数一、函数的最值(2020安徽省十四校联盟高三段考)已知函数.(1)求曲线在点处的切线方程;(2)求函数在区间上的最大值和最小值.(1)求曲线在点处的切线方程;(2)求函数在区间上的最大值和最小值.试题解析(1)求曲线在点处的切线方程;(1)因为,所以,.又因为,所以曲线在点处的切线方程为.(2)求函数在区间上的最大值和最小值.(2)设,则.当时,所以在区间上单调递减.所以对任意有,即.所以函数在区间上单调递减.因此在区间上的最大值为,最小值为.应对策略1.导数法证明函数f(x)在(a,b)内的单调性的步骤:(1)求f(x);(2)确认f(x)在(a,b)内的符号;(3)作出结论:f(x)>0时为增函数;f(x)<0时为减函数. .="">1时,1-0+所以当时, 令,得当时,0在上恒成立,在上为增函数,当时, 令,得(舍) 综上所述,所求为(2)因为对于任意的实数,在区间上总是减函数,则对于x(1,3),0,    所以在区间1,3上恒成立设g(x)=,因为,所以g(x)在区间1,3上恒成立由g(x)二次项系数为正,得   即 亦即 因为=,所以当n6时,m,当n6时,m,所以当n6时,h(n)= ,当n6时,h(n)= ,即

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 高中 > 高中数学 > 数学高考 > 一轮复习