2020版高考数学大一轮复习 第十一章 概率 11.1 随机事件的概率与古典概型

上传人:hua****011 文档编号:121499 上传时间:2020-02-20 格式:DOCX 页数:26 大小:671.26KB
下载 相关 举报
2020版高考数学大一轮复习 第十一章 概率 11.1 随机事件的概率与古典概型_第1页
第1页 / 共26页
2020版高考数学大一轮复习 第十一章 概率 11.1 随机事件的概率与古典概型_第2页
第2页 / 共26页
2020版高考数学大一轮复习 第十一章 概率 11.1 随机事件的概率与古典概型_第3页
第3页 / 共26页
2020版高考数学大一轮复习 第十一章 概率 11.1 随机事件的概率与古典概型_第4页
第4页 / 共26页
2020版高考数学大一轮复习 第十一章 概率 11.1 随机事件的概率与古典概型_第5页
第5页 / 共26页
点击查看更多>>
资源描述

1、11.1随机事件的概率与古典概型最新考纲考情考向分析1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义及频率与概率的区别.2.了解两个互斥事件的概率加法公式.3.理解古典概型及其概率计算公式.4.会计算一些随机事件所含的基本事件数及事件发生的概率.以考查随机事件、互斥事件与对立事件的概率为主,常与事件的频率交汇考查.本节内容在高考中三种题型都有可能出现,随机事件的频率与概率的题目往往以解答题的形式出现,互斥事件、对立事件的概念及概率常常以选择、填空题的形式出现.1.事件(1)不可能事件、必然事件、随机事件:在同样的条件下重复进行试验时,有的结果始终不会发生,它称为不可能事件;有的结果

2、在每次试验中一定会发生,它称为必然事件;有的结果可能发生,也可能不发生,它称为随机事件.(2)基本事件、基本事件空间:试验连同它出现的每一个结果称为一个基本事件,它是试验中不能再分的最简单的随机事件;所有基本事件构成的集合称为基本事件空间,基本事件空间常用大写希腊字母表示.2.概率与频率(1)概率定义:在n次重复进行的试验中,事件A发生的频率,当n很大时,总是在某个常数附近摆动,随着n的增加,摆动幅度越来越小,这时就把这个常数叫做事件A的概率,记作P(A).(2)概率与频率的关系:概率可以通过频率来“测量”,频率是概率的一个近似.3.事件的关系与运算名称定义并事件(和事件)由事件A和B至少有一

3、个发生所构成的事件C互斥事件不可能同时发生的两个事件A、B互为对立事件不能同时发生且必有一个发生的两个事件A、B4.概率的几个基本性质(1)概率的取值范围:0P(A)1.(2)必然事件的概率P(E)1.(3)不可能事件的概率P(F)0.(4)概率的加法公式如果事件A与事件B互斥,则P(AB)P(A)P(B).(5)对立事件的概率若事件A与事件B互为对立事件,则P(A)1P(B).5.基本事件的特点(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.6.古典概型的两个特点(1)有限性:在一次试验中,可能出现的结果只有有限个,即只有有限个不同的基本事件;(2)等

4、可能性:每个基本事件发生的可能性是均等的.7.如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是;如果某个事件A包括的结果有m个,那么事件A的概率P(A).8.古典概型的概率公式P(A).概念方法微思考1.随机事件A发生的频率与概率有何区别与联系?提示随机事件A发生的频率是随机的,而概率是客观存在的确定的常数,但在大量随机试验中事件A发生的频率稳定在事件A发生的概率附近.2.随机事件A,B互斥与对立有何区别与联系?提示当随机事件A,B互斥时,不一定对立,当随机事件A,B对立时,一定互斥.3.任何一个随机事件与基本事件有何关系?提示任何一个随机事件都

5、等于构成它的每一个基本事件的和.4.如何判断一个试验是否为古典概型?提示一个试验是否为古典概型,关键在于这个试验是否具有古典概型的两个特征:有限性和等可能性.题组一思考辨析1.判断下列结论是否正确(请在括号中打“”或“”)(1)事件发生的频率与概率是相同的.()(2)在大量重复试验中,概率是频率的稳定值.()(3)两个事件的和事件是指两个事件都得发生.()(4)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能的.()(5)从市场上出售的标准为5005 g的袋装食盐中任取一袋测其重量,属于古典概型.()题组二教材改编2.一个人打靶时连续射击两次,事件“至少有一次中靶”

6、的对立事件是()A.至多有一次中靶 B.两次都中靶C.只有一次中靶 D.两次都不中靶答案D解析“至少有一次中靶”的对立事件是“两次都不中靶”.3.一个盒子里装有标号为1,2,3,4的4张卡片,随机地抽取2张,则取出的2张卡片上的数字之和为奇数的概率是()A. B.C. D.答案D解析抽取两张卡片的基本事件有:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6种,和为奇数的事件有:(1,2),(1,4),(2,3),(3,4),共4种.所求概率为.4.同时掷两个骰子,向上点数不相同的概率为_.答案解析掷两个骰子一次,向上的点数共6636(种)可能的结果,其中点数相同的结

7、果共有6种,所以点数不相同的概率P1.题组三易错自纠5.将一枚硬币向上抛掷10次,其中“正面向上恰有5次”是()A.必然事件 B.随机事件C.不可能事件 D.无法确定答案B解析抛掷10次硬币,正面向上的次数可能为010,都有可能发生,正面向上5次是随机事件.6.将号码分别为1,2,3,4的四个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个小球,其号码为a,放回后,乙从此袋中再摸出一个小球,其号码为b,则使不等式a2b40成立的事件发生的概率为_.答案解析由题意知(a,b)的所有可能结果有4416(种),其中满足a2b40,就去打球,若X0,就去唱歌,若X0,就去下棋,则小

8、波不去唱歌的概率是_.答案解析根据题意可知,X的所有可能取值为2,1,0,1.数量积为2的有,共1种;数量积为1的有,共6种;数量积为0的有,共4种;数量积为1的有,共4种,故所有可能的情况共有164415(种),其中X0的情况有16411(种),故根据古典概型的概率计算公式知小波不去唱歌的概率P.引申探究1.本例(2)中,若将4个球改为颜色相同,标号分别为1,2,3,4的四个小球,从中一次取两球,求标号和为奇数的概率.解基本事件数仍为6.设标号和为奇数为事件A,则A包含的基本事件为(1,2),(1,4),(2,3),(3,4),共4种,所以P(A).2.本例(2)中,若将条件改为有放回地取球

9、,取两次,求两次取球颜色相同的概率.解基本事件为(白,白),(白,红),(白,黄),(白,黄),(红,红),(红,白),(红,黄),(红,黄),(黄,黄),(黄,白),(黄,红),(黄,黄),(黄,黄),(黄,白),(黄,红),(黄,黄),共16种,其中颜色相同的有6种,故所求概率P.思维升华 求古典概型的概率的关键是求试验的基本事件的总数和事件A包含的基本事件的个数,这就需要正确列出基本事件,基本事件的表示方法有列举法、列表法和树状图法,具体应用时可根据需要灵活选择.跟踪训练2 (1)(2016全国)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,

10、2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是()A. B. C. D.答案C解析由题意可知,共15种可能性,而只有1种是正确的.输入一次密码能够成功开机的概率为.(2)(2018大连模拟)已知a0,1,2,b1,1,3,5,则函数f(x)ax22bx在区间(1,)上为增函数的概率是()A. B. C. D.答案A解析a0,1,2,b1,1,3,5,基本事件总数n3412.函数f(x)ax22bx在区间(1,)上为增函数,当a0时,f(x)2bx,符合条件的只有(0,1),即a0,b1;当a0时,需要满足1,符合条件的有(1,1),(1,1),(2,1),(2,1),共4种

11、.函数f(x)ax22bx在区间(1,)上为增函数的概率是P.题型三古典概型与统计的综合应用例5某县共有90个农村淘宝服务网点,随机抽取6个网点统计其元旦期间的网购金额(单位:万元)的茎叶图如图所示,其中茎为十位数,叶为个位数.(1)根据茎叶图计算样本数据的平均数;(2)若网购金额(单位:万元)不小于18的服务网点定义为优秀服务网点,其余为非优秀服务网点,根据茎叶图推断这90个服务网点中优秀服务网点的个数;(3)从随机抽取的6个服务网点中再任取2个作网购商品的调查,求恰有1个网点是优秀服务网点的概率.解(1)由题意知,样本数据的平均数12.(2)样本中优秀服务网点有2个,概率为,由此估计这90

12、个服务网点中优秀服务网点有9030(个).(3)样本中优秀服务网点有2个,分别记为a1,a2,非优秀服务网点有4个,分别记为b1,b2,b3,b4,从随机抽取的6个服务网点中再任取2个的可能情况有:(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a1,b4),(a2,b1),(a2,b2),(a2,b3),(a2,b4),(b1,b2),(b1,b3),(b1,b4),(b2,b3),(b2,b4),(b3,b4),共15种,记“恰有1个是优秀服务网点”为事件M,则事件M包含的可能情况有:(a1,b1),(a1,b2),(a1,b3),(a1,b4),(a2,b1),(a2,

13、b2),(a2,b3),(a2,b4),共8种,故所求概率P(M).思维升华 有关古典概型与统计结合的题型是高考考查概率的一个重要题型,已成为高考考查的热点,概率与统计的结合题,无论是直接描述还是利用概率分布表、频率分布直方图、茎叶图等给出信息,准确从题中提炼信息是解题的关键.跟踪训练3 从某学校高三年级共800名男生中随机抽取50名测量身高,被测学生身高全部介于155 cm和195 cm之间,将测量结果按如下方式分成八组:第一组155,160),第二组160,165),第八组190,195,如图是按上述分组方法得到的频率分布直方图的一部分,已知第六组比第七组多1人,第一组和第八组人数相同.(

14、1)求第六组、第七组的频率并补充完整频率分布直方图;(2)若从身高属于第六组和第八组的所有男生中随机抽取两名,记他们的身高分别为x,y,求|xy|5的概率.解(1)由频率分布直方图知,前五组的频率为(0.0080.0160.040.040.06)50.82,所以后三组的频率为10.820.18,人数为0.18509,由频率分布直方图得第八组的频率为0.00850.04,人数为0.04502,设第六组人数为m,则第七组人数为m1,又mm129,所以m4,即第六组人数为4,第七组人数为3,频率分别为0.08,0.06,频率除以组距分别等于0.016,0.012,则完整的频率分布直方图如图所示:(2

15、)由(1)知身高在180,185)内的男生有四名,设为a,b,c,d,身高在190,195的男生有两名,设为A,B.若x,y180,185),有ab,ac,ad,bc,bd,cd共6种情况;若x,y190,195,只有AB 1种情况;若x,y分别在180,185),190,195内,有aA,bA,cA,dA,aB,bB,cB,dB共8种情况,所以基本事件的总数为68115,事件|xy|5包含的基本事件的个数为617,故所求概率为.概率与统计例 (12分)海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示.工作人员用分层抽样的方法从这些

16、商品中共抽取6件样品进行检测.地区ABC数量50150100(1)求这6件样品中来自A,B,C各地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.规范解答解(1)A,B,C三个地区商品的总数量为50150100300,抽样比为,所以样本中包含三个地区的个体数量分别是501,1503,1002.所以A,B,C三个地区的商品被选取的件数分别是1,3,2.6分(2)设6件来自A,B,C三个地区的样品分别为:A;B1,B2,B3;C1,C2.则从6件样品中抽取的这2件商品构成的所有基本事件为:A,B1,A,B2,A,B3,A,C1,A,C2,B

17、1,B2,B1,B3,B1,C1,B1,C2,B2,B3,B2,C1,B2,C2,B3,C1,B3,C2,C1,C2,共15个.8分每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D:“抽取的这2件商品来自相同地区”,则事件D包含的基本事件有:B1,B2,B1,B3,B2,B3,C1,C2,共4个.所以P(D),11分即这2件商品来自相同地区的概率为.12分求概率与统计问题的一般步骤第一步:根据概率统计的知识确定元素(总体、个体)以及要解决的概率模型;第二步:将所有基本事件列举出来(可用树状图);第三步:计算基本事件总数n,事件A包含的基本事件数m,代入公式P(A);第四步:

18、回到所求问题,规范作答.1.从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.至少有一个黑球与都是黑球B.至少有一个黑球与都是红球C.至少有一个黑球与至少有一个红球D.恰有一个黑球与恰有两个黑球答案D解析对于A,事件“至少有一个黑球”与事件“都是黑球”可以同时发生,A不正确;对于B,事件“至少有一个黑球”与事件“都是红球”不能同时发生,但一定会有一个发生,这两个事件是对立事件,B不正确;对于C,事件“至少有一个黑球”与事件“至少有一个红球”可以同时发生,如:一个红球,一个黑球,C不正确;对于D,事件“恰有一个黑球”与事件“恰有两个黑球”不能同时发生,但从口袋中任取

19、两个球时还有可能是两个都是红球,两个事件是互斥事件但不是对立事件,D正确.2.(2016天津)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()A. B. C. D.答案A解析事件“甲不输”包含“和棋”和“甲获胜”这两个互斥事件,所以甲不输的概率为.3.对一批产品的长度(单位:mm)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间20,25)上的为一等品,在区间15,20)和区间25,30)上的为二等品,在区间10,15)和30,35上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为()A.0.09 B.0.20 C.0

20、.25 D.0.45答案D解析设25,30)上的频率为x,由所有矩形面积之和为1,即x(0.020.040.030.06)51,得25,30)上的频率为0.25.所以产品为二等品的概率为0.0450.250.45.4.(2018抚顺期中)根据某医疗研究所的调查,某地区居民血型的分布为:O型50%,A型15%,B型30%,AB型5%.现有一血液为A型病人需要输血,若在该地区任选一人,那么能为病人输血的概率为()A.15% B.20% C.45% D.65%答案D解析因为某地区居民血型的分布为:O型50%,A型15%,B型30%,AB型5%,现在能为A型病人输血的有O型和A型,故为病人输血的概率为

21、50%15%65%,故选D.5.(2018鞍山检测)每年三月为学雷锋活动月,某班有青年志愿者男生3人,女生2人,现需选出2名青年志愿者到社区做公益宣传活动,则选出的2名志愿者性别相同的概率为()A. B. C. D.答案B解析设男生为A,B,C,女生为a,b,从5人中选出2名志愿者有:(A,B),(A,C),(A,a),(A,b),(B,C),(B,a),(B,b),(C,a),(C,b),(a,b),共10种等可能情况,其中选出的2名志愿者性别相同的有(A,B),(A,C),(B,C),(a,b),共4种等可能的情况,则选出的2名志愿者性别相同的概率为P.6.设m,n分别是先后抛掷一枚骰子得

22、到的点数,则在先后两次出现的点数中有5的条件下,方程x2mxn0有实根的概率为()A. B. C. D.答案C解析先后两次出现的点数中有5的情况有:(1,5),(2,5),(3,5),(4,5),(5,5),(6,5),(5,1),(5,2),(5,3),(5,4),(5,6),共11种,其中使方程x2mxn0有实根的情况有:(5,5),(6,5),(5,1),(5,2),(5,3),(5,4),(5,6),共7种.故所求事件的概率P.7.若a,b0,1,2,则函数f(x)ax22xb有零点的概率为_.答案解析a,b0,1,2,当函数f(x)ax22xb没有零点时,a0,且44ab1,(a,b

23、)有3种情况:(1,2),(2,1),(2,2).基本事件总数n339,函数f(x)ax22xb有零点的概率为P1.8.如图所示的茎叶图是甲、乙两人在4次模拟测试中的成绩,其中一个数字被污损,则甲的平均成绩不超过乙的平均成绩的概率为_.答案0.3解析依题意,记题中被污损的数字为x,若甲的平均成绩不超过乙的平均成绩,则有(8921)(53x5)0,解得x7,即此时x的可能取值是7,8,9,因此甲的平均成绩不超过乙的平均成绩的概率P0.3.9.在集合中任取一个元素,所取元素恰好满足方程cos x的概率是_.答案解析基本事件总数为10,满足方程cos x的基本事件数为3,故所求概率P.10.在3张奖

24、券中有一、二等奖各1张,另1张无奖.甲、乙两人各抽取1张,则两人都中奖的概率是_.答案解析设中一、二等奖及不中奖分别记为1,2,0,那么甲、乙抽奖结果有(1,2),(1,0),(2,1),(2,0),(0,1),(0,2),共6种.其中甲、乙都中奖有(1,2),(2,1),共2种,所以P(A).11.设连续抛掷两次骰子得到的点数分别为m,n,令平面向量a(m,n),b(1,3).(1)求事件“ab”发生的概率;(2)求事件“|a|b|”发生的概率.解(1)由题意知,m1,2,3,4,5,6,n1,2,3,4,5,6,故(m,n)所有可能的情况共36种.因为ab,所以m3n0,即m3n,有(3,

25、1),(6,2),共2种,所以事件“ab”发生的概率为.(2)由|a|b|,得m2n210,有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),共6种,其概率为.所以事件“|a|b|”发生的概率为.12.(2016山东)某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为x,y.奖励规则如下:若xy3,则奖励玩具一个;若xy8,则奖励水杯一个;其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀,小亮准备参加此项活动.(1)求小亮获得玩具的概率;(2)请比较小亮

26、获得水杯与获得饮料的概率的大小,并说明理由.解(1)用数对(x,y)表示儿童参加活动先后记录的数,则基本事件空间与点集S(x,y)|xN,yN,1x4,1y4一一对应.因为S中元素的个数是4416,所以基本事件总数n16.记“xy3”为事件A,则事件A包含的基本事件共5个,即(1,1),(1,2),(1,3),(2,1),(3,1),所以P(A),即小亮获得玩具的概率为.(2)记“xy8”为事件B,“3xy,所以小亮获得水杯的概率大于获得饮料的概率.13.(2018湖北省部分重点中学考试)某商场对某一商品搞活动,已知该商品每一个的进价为3元,售价为8元,每天销售的第20个及之后的商品按半价出售

27、,该商场统计了近10天这种商品的销售量,如图所示.设x为这种商品每天的销售量,y为该商场每天销售这种商品的利润,从日利润不少于96元的几天里任选2天,则选出的这2天日利润都是97元的概率为()A. B. C. D.答案B解析日销售量不少于20个时,日利润不少于96元,其中日销售量为20个时,日利润为96元;日销售量为21个时,日利润为97元.从条形统计图可以看出,日销售量为20个的有3天,日销售量为21个的有2天,日销售量为20个的3天记为a,b,c,日销售量为21个的2天记为A,B,从这5天中任选2天,可能的情况有10种:(a,b),(a,c),(a,A),(a,B),(b,c),(b,A)

28、,(b,B),(c,A),(c,B),(A,B),其中选出的2天日销售量都为21个的情况只有1种,故所求概率P,故选B.14.某学校成立了数学、英语、音乐3个课外兴趣小组,3个小组分别有39,32,33个成员,一些成员参加了不止一个小组,具体情况如图所示.现随机选取一个成员,他属于至少2个小组的概率是_,他属于不超过2个小组的概率是_.答案解析“至少2个小组”包含“2个小组”和“3个小组”两种情况,故他属于至少2个小组的概率为P.“不超过2个小组”包含“1个小组”和“2个小组”,其对立事件是“3个小组”.故他属于不超过2个小组的概率是P1.15.掷一个骰子的试验,事件A表示“出现小于5的偶数点

29、”,事件B表示“出现小于5的点”,若表示B的对立事件,则一次试验中,事件A发生的概率为()A. B. C. D.答案C解析掷一个骰子的试验有6种可能的结果.依题意知P(A),P(B),P()1P(B)1,表示“出现5点或6点”,事件A与互斥,P(A)P(A)P().16.一个三位数个位、十位、百位上的数字依次为x,y,z,当且仅当yx,yz时,称这样的数为“凸数”(如243),现从集合5,6,7,8中取出三个不同的数组成一个三位数,则这个三位数是“凸数”的概率为()A. B. C. D.答案B解析从集合5,6,7,8中取出3个不同的数组成一个三位数共有24个结果:567,576,657,675,756,765,568,586,658,685,856,865,578,587,758,785,857,875,678,687,768,786,867,876,其中是“凸数”的是:576,675,586,685,587,785,687,786共8个结果,这个三位数是“凸数”的概率为,故选B.

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 高中 > 高中数学 > 数学高考 > 一轮复习