2020版高考数学大一轮复习 第三章 导数及其应用 高考专题突破1第2课时 导数与方程

上传人:hua****011 文档编号:121485 上传时间:2020-02-20 格式:DOCX 页数:7 大小:140.09KB
下载 相关 举报
2020版高考数学大一轮复习 第三章 导数及其应用 高考专题突破1第2课时 导数与方程_第1页
第1页 / 共7页
2020版高考数学大一轮复习 第三章 导数及其应用 高考专题突破1第2课时 导数与方程_第2页
第2页 / 共7页
2020版高考数学大一轮复习 第三章 导数及其应用 高考专题突破1第2课时 导数与方程_第3页
第3页 / 共7页
2020版高考数学大一轮复习 第三章 导数及其应用 高考专题突破1第2课时 导数与方程_第4页
第4页 / 共7页
2020版高考数学大一轮复习 第三章 导数及其应用 高考专题突破1第2课时 导数与方程_第5页
第5页 / 共7页
点击查看更多>>
资源描述

1、第2课时导数与方程题型一求函数零点个数例1 设函数f(x)x2mln x,g(x)x2(m1)x,当m1时,讨论f(x)与g(x)图象的交点个数解令F(x)f(x)g(x)x2(m1)xmln x,x0,问题等价于求函数F(x)的零点个数F(x),当m1时,F(x)0,函数F(x)为减函数,注意到F(1)0,F(4)ln 41时,若0xm,则F(x)0;若1x0,所以函数F(x)在(0,1)和(m,)上单调递减,在(1,m)上单调递增,注意到F(1)m0,F(2m2)mln(2m2)0),由f(x)0,得xe.当x(0,e)时,f(x)0,f(x)在(e,)上单调递增,当xe时,f(x)取得极

2、小值f(e)ln e2,f(x)的极小值为2.(2)由题设g(x)f(x)(x0),令g(x)0,得mx3x(x0)设(x)x3x(x0),则(x)x21(x1)(x1),当x(0,1)时,(x)0,(x)在(0,1)上单调递增;当x(1,)时,(x)时,函数g(x)无零点;当m时,函数g(x)有且只有一个零点;当0m时,函数g(x)无零点;当m或m0时,函数g(x)有且只有一个零点;当0m时,函数g(x)有两个零点题型二根据函数零点情况求参数范围例2 (2018抚顺模拟)已知函数f(x)2ln xx2ax(aR)若函数g(x)f(x)axm在上有两个零点,求实数m的取值范围解g(x)2ln

3、xx2m,则g(x)2x.因为x,所以当g(x)0时,x1.当x0;当1xe时,g(x)0.故g(x)在x1处取得极大值g(1)m1.又gm2,g(e)m2e2,g(e)g4e20,则g(e)g,所以g(x)在上的最小值是g(e)g(x)在上有两个零点的条件是解得10),所以h(x)1.所以x在上变化时,h(x),h(x)的变化情况如下:x1(1,e)h(x)0h(x)极小值又h3e2,h(1)4,h(e)e2.且h(e)h42e0.所以h(x)minh(1)4,h(x)maxh3e2,所以实数a的取值范围为40,解得xe2,令f(x)0,解得0x时,f(x)min0,f(x)无零点,当a时,

4、f(x)min0,f(x)有1个零点,当a时,f(x)min0,解得x1,令f(x)0,解得0x1,所以f(x)在(0,1)上单调递减,在(1,)上单调递增(2)F(x)f(x)3,由(1)得x1,x2,满足0x110可得x2或x1,由f(x)0可得1x2,所以函数f(x)在(,1),(2,)上是增函数,在(1,2)上是减函数,所以函数f(x)的极大值为f(1)c,极小值为f(2)c.而函数f(x)恰有三个零点,故必有解得c0)(1)若g(x)m有零点,求m的取值范围;(2)确定m的取值范围,使得g(x)f(x)0有两个相异实根解(1)g(x)x22e(x0),当且仅当x时取等号,当xe时,g

5、(x)有最小值2e.要使g(x)m有零点,只需m2e.即当m2e,)时,g(x)m有零点(2)若g(x)f(x)0有两个相异实根,则函数g(x)与f(x)的图象有两个不同的交点如图,作出函数g(x)x(x0)的大致图象f(x)x22exm1(xe)2m1e2,其对称轴为xe,f(x)maxm1e2.若函数f(x)与g(x)的图象有两个交点,则m1e22e,即当me22e1时,g(x)f(x)0有两个相异实根m的取值范围是(e22e1,)5已知函数f(x)(3a)x2ln xa3在上无零点,求实数a的取值范围解当x从0的右侧趋近于0时,f(x),所以f(x)0恒成立,即只需当x时,a3恒成立令h(x)3,x,则h(x),再令m(x)2ln x2,x,则m(x)m64ln 20,所以h(x)0在上恒成立,所以h(x)在上为增函数,所以h(x)h在上恒成立又h3ln 2,所以a3ln 2,故实数a的取值范围是.

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 高中 > 高中数学 > 数学高考 > 一轮复习