中考数学二轮复习讲义第06讲-解直角三角形-学案

题型四 解直角三角形 1. 如图,甲乙两楼相距 30 米,乙楼高度为 36米,自甲楼顶 A 处看乙楼楼顶 B 处仰角为 30 ,则甲楼高度 为()A. 11米 B.(3615)米 C. 15米 D. (3610)米 2. 如图,一架长为 6米的梯子 AB斜靠在一竖直的墙 AO 上,这时测得ABO=7

中考数学二轮复习讲义第06讲-解直角三角形-学案Tag内容描述:

1、题型四 解直角三角形 1. 如图,甲乙两楼相距 30 米,乙楼高度为 36米,自甲楼顶 A 处看乙楼楼顶 B 处仰角为 30 ,则甲楼高度 为()A. 11米 B.(3615)米 C. 15米 D. (3610)米 2. 如图,一架长为 6米的梯子 AB斜靠在一竖直的墙 AO 上,这时测得ABO=70 ,如果梯子的底端 B外 移到 D,则梯子顶端 A 下移到 C,这时又测得CDO=50 ,那么 A。

2、学科教师辅导讲义学员编号: 年 级:九年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第10讲-直角三角形与锐角三角函数 授课类型T同步课堂P实战演练S归纳总结教学目标 熟练掌握直角三角形的性质与判定; 熟练掌握特殊角的三角函数值; 熟练应用锐角三角函数计算高度。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理二、 知识概念(一)直角三角形的性质1直角三角形的两锐角_2直角三角形中,30角所对的边等于斜边的_3直角三角形斜边上的中线等于斜边的_4勾股定理:直角三角形两直角边的平方和等于斜。

3、学科教师辅导讲义学员编号: 年 级:九年级(下)课 时 数:3学员姓名:辅导科目:数 学学科教师:授课主题第10讲-直角三角形与锐角三角函数 授课类型T同步课堂P实战演练S归纳总结教学目标 熟练掌握直角三角形的性质与判定; 熟练掌握特殊角的三角函数值; 熟练应用锐角三角函数计算高度。授课日期及时段T(Textbook-Based)同步课堂体系搭建一、 知识梳理二、 知识概念(一)直角三角形的性质1直角三角形的两锐角_2直角三角形中,30角所对的边等于斜边的_3直角三角形斜边上的中线等于斜边的_4勾股定理:直角三角形两直角边的平方和等于斜。

4、第二部分第三章第3讲1如图所示,在等腰直角三角形ABC中,C90,点D在CB的延长线上,且BDAB,求ADB的正切值解:在等腰直角三角形ABC中,BCAC,根据勾股定理得ABAC,则BDABACCDCBBD(1)AC则tanADB1.2(2019巴彦淖尔一模)如图,在等腰RtABC中,C90,AC6,D是AC上一点,且tanDBA.(1)求AD的长;(2)求sinDBC的值解:(1)过点D作DHAB于点H,等腰三角形ABC,C90,A45,AHDH.设AHDHx.tanDBA,BH5x,AB6x.AC6,由勾股定理可知AB6.x,AHDH.由勾股定理可知AD2.(2)由(1)知AD2,DC4.由勾股定理可知DB2,sinDBC.3(2019鞍山二模)某海域有A,B,C三艘船正在捕鱼。

5、第三章 解答题(二)突破8分题,第3讲 解直角三角形,第二部分 专题突破,3,方法突破,4,【方法归纳】解直角三角形时,一般选取既含未知边(角)又含有已知边(或角)的直角三角形,通过锐角三角函数的定义或勾股定理,建构已知或未知之间的桥梁,从而实现求解若所求的线段(或角)不能直接求解,可以通过作出点到直线的距离或三角形高线,进而转化成直角三角形求解,5,6,7,8,【思路点拨】(1)分别在RtAPO,RtBOP中,求出AO,BO的长,从而可求得AB的长;(2)已知时间则可以根据路程公式求得其速度,将限速与其速度进行比较,若大于限速则超速,否则没有超。

6、高效提分 源于优学第06讲 解直角三角形知识框架知识要点一锐角三角函数1.定义:锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)都叫做角A的锐角三角函数。2.三角函数 正弦sinA= 余弦cosA= 正切tanA= 余切cotA=3.特殊角的三角函数典例分析例1.如图,点A为边上任意一点,作ACBC于点C,CDAB于点D,下列用线段比表示sin的值,错误的是()A B C D例2.在ABC中,若|sinA|+(cosB)2=0,A,B都是锐角,则C的度数是(。

标签 > 中考数学二轮复习讲义第06讲-解直角三角形-学案[编号:101775]