五年级高斯奥数之约数和倍数含答案

第六讲 直线型计算中的倍数关系 迄今为止,同学们已经学会了很多图形计算面积的方法在计算这些面积的时候,只要 知道相应线段的长度,然后利用公式即可以计算例如计算长方形的面积,只需知道长方形 的长和宽即可利用长方形的面积长 宽进行计算但很多时候,题目中并不给出长和宽, 那怎么来求面积呢?我们来看下面这个

五年级高斯奥数之约数和倍数含答案Tag内容描述:

1、第六讲 直线型计算中的倍数关系 迄今为止,同学们已经学会了很多图形计算面积的方法在计算这些面积的时候,只要 知道相应线段的长度,然后利用公式即可以计算例如计算长方形的面积,只需知道长方形 的长和宽即可利用长方形的面积长 宽进行计算但很多时候,题目中并不给出长和宽, 那怎么来求面积呢?我们来看下面这个例题 例题例题1. 如图,有 9 个小长方形,其中的 5 个小长方形的面积分别为 4、8、 12、16、20 平方米其余 4 个长方形的面积分别是多少平方米? 分析分析如果两个长方形的一条边相等,我们可以比较它们的另一条边来求 它们。

2、第十四讲 公约数与公倍数初步 公约数就是几个数公共的约数, 其中最大的一个称为最大公约数最大公约数; 公倍数就是几个数公 共的倍数,其中最小的一个称为最小公倍数最小公倍数特别的,1 为所有数的公约数 24 : 1 2 3 4 6 8 12 24 30 : 1 2 3 5 6 10 15 30 1、2、3 和 6 都是 24 和 30 的公约数,6 是最大公约数可以发现 1、2、3 和 6 都是 6 的约数 12 : 12 24 36 48 60 72 84 96 108 18 : 18 36 54 72 90 108 12 和 18 的公倍数有 36、72、108、,36 是最小公倍数可以发现 36、72、108 及 其他公倍数都是 36 的倍数 通常,我们把两个数。

3、第十五讲 公约数与公倍数进阶 这一讲我们来继续学习有关约数与倍数更深入的知识 首先来看一下最大公约数、 最小 公倍数与原数之间的关系 两个数,如果它们的最大公约数是 k那么可以假设这两个数分别为、,其 中 a、b 互质 而它们的最小公倍数可以表示为 通过观察,我们发现由此可得: 两数的最大公约数乘以最小公倍数等于两数乘积 注意,这个性质只在两个数的时候有效,如果数更多就不成立,同学们可以尝试举例说明 性质虽然好用,但它要求给出最大公约数,最小公倍数和两数中的一个才行如果只给 出最大公约数和最小公倍数,能不能把原来。

4、第十讲 约数与倍数 在前面的章节,我们学习了数论中的整除和质数合数等知识今天,我们来学习数论中 有关约数与倍数的知识 约数和倍数的定义是这样的: 对整数 a 和 b, 如果|a b, 我们就称 a 是 b 的约数 (因数) , b 是 a 的倍数 根据定义, 我们很容易找到一个数的所有约数, 例如对12: 因为121 122 63 4 , 可知 12 可以被 1、2、3、4、6、12 整除,那么它的约数有 1、2、3、4、6、12,共 6 个 从上面 12 的分拆可以看出,约数具有“成对出现成对出现 ”的特征,也就是:最大约数对应最 小约数、第二大约数对应第二小约数等所以在。

5、第 7 讲 约数与倍数内容概述掌握约数与倍数酌概念学会约数个数与约数和的计算方法;掌握最大公约数、最小公倍数的常用计算方法;能够利用最大公约数和最小公倍数的性质解决相关的整数问题典型问题兴趣篇1(1)请写出 105 的所有约数;(2)请写出 72 的所有约数2(1) 20000 的约数有多少个?(2) 720 的约数有多少个?3计算:(1) (28,72), 28,72; (2) (28,44,260), 28, 44, 260.4两个数的差是 6,它们的最大公约数可能是多少?5(1)求 1085 和 1178 的最大公约数和最小公倍数; (2)求 3553,3910 和 1411 的最大公约数6教师节到了,校工会买了 32。

【五年级高斯奥数之约数和倍】相关DOC文档
标签 > 五年级高斯奥数之约数和倍数含答案[编号:153557]